access icon free QOSTBC coded MIMO system with reduced complexity and optimised decoding for rank deficient channels

In multiple-input multiple-output (MIMO) systems, rank deficient channels are the most common and key areas of research. In these channels, the number of transmit antennas (M Tx) is higher than receive antennas (M Rx) and subsequently the unknown variables are more than the number of equations. In such situations, the conventional sphere decoder (SD) fails due to the presence of zero diagonal elements in Cholesky decomposition. This study analyses the quasi-orthogonal space-time block code (QOSTBC) of symbol rate-2 for M Tx = 4 with modified double-layer SD detection to overcome rank deficiency problem. The first half of transmitted symbols is detected using two partially dependent SDs with optimised search radii. The remaining half is detected by employing single symbol maximum likelihood detection. Simulation and analytical results indicate that the proposed detection scheme reduces bit error rate and complexity compared to existing techniques.

Inspec keywords: space-time block codes; decoding; receiving antennas; transmitting antennas; communication complexity; maximum likelihood detection; search problems; channel coding; error statistics; antenna arrays; MIMO communication

Other keywords: multiple-input multiple-output systems; bit error rate; zero diagonal elements; sphere decoder; symbol rate-2; single symbol maximum likelihood detection; Cholesky decomposition; receiving antennas; rank deficiency problem; QOSTBC coded MIMO system; rank deficient channels; quasiorthogonal space-time block code; transmitting antennas; modified double-layer SD detection; search radii optimisation

Subjects: Combinatorial mathematics; Optimisation techniques; Signal detection; Codes; Antenna arrays; Radio links and equipment; Other topics in statistics

References

    1. 1)
      • 29. Zeng, Y., Xu, X., Guan, Y.L., et al: ‘Degrees of freedom of the three-user rank-deficient MIMO interference channel’, IEEE Trans. Wirel. Commun., 2014, 13, (8), pp. 41794192.
    2. 2)
      • 13. Gupta, B., Saini, D.S.: ‘A rate MT full diversity STF block coded 4 × 4 MIMO-OFDM system with reduced complexity’, Wirel. Pers. Commun., 2013, 72, (2), pp. 14891512.
    3. 3)
      • 23. Cui, T., Tellambura, C.: ‘An efficient generalized sphere decoder for rank-deficient MIMO systems’, IEEE Commun. Lett., 2005, 9, (5), pp. 423425.
    4. 4)
      • 18. Wang, L., Xu, L., Chen, S., et al: ‘Generic iterative search centre-shifting k-best sphere detection for rank-deficient SDM-OFDM systems’, Electron. Lett., 2008, 44, (8), pp. 552553.
    5. 5)
      • 12. Foschini, G.J., Golden, G.D., Valenzuela, R.A., et al: ‘Simplified processing for high spectral efficiency wireless communication employing multi-element arrays’, IEEE J. Sel. Areas Commun., 1999, 17, pp. 18411852.
    6. 6)
      • 14. Peng, A., Kim, I.M., Yousefi S., : ‘Low-complexity sphere decoding algorithm for quasi-orthogonal space-time block codes’, IEEE Trans. Commun., 2006, 54, (3), pp. 377–382.
    7. 7)
      • 20. Foschini, G.J.: ‘Layered space-time architecture for wireless communication in a fading environment when using multiple antennas’, Bell Lab. Tech. J., 1996, 1, pp. 4159.
    8. 8)
      • 19. Barbero, L.G., Thompson, J.S.: ‘Extending a fixed-complexity sphere decoder to obtain likelihood information for turbo-MIMO systems’, IEEE Trans. Veh. Technol., 2008, 57, (5), pp. 28042814.
    9. 9)
      • 9. Fazel, F., Jafarkhani, H.: ‘Quasi-orthogonal space-frequency and space time–frequency block codes for MIMO OFDM channels’, IEEE Trans. Wirel. Commun., 2008, 7, (1), pp. 184192.
    10. 10)
      • 17. Ahmadi, Á., Talebi, S., Shahabinejad, M.: ‘A new approach to fast decode quasi-orthogonal space-time block codes’, IEEE Trans. Wirel. Commun., 2015, 14, (1), pp. 165176.
    11. 11)
      • 28. Saxena, A.K., Fijalkow, I., Swindlehurst, A.L.: ‘Analysis of one-bit quantized precoding for the multiuser massive MIMO downlink’, IEEE Trans. Signal Process., 2017, 65, (17), pp. 46244634.
    12. 12)
      • 24. Wang, P., Le-Ngoc, T.: ‘A low-complexity generalized sphere decoding approach for underdetermined linear communication systems: performance and complexity evaluation’, IEEE Trans. Commun., 2009, 57, (11), pp. 33763388.
    13. 13)
      • 5. Alamouti, S.: ‘A simple transmit diversity technique for wireless communications’, IEEE J. Sel. Areas Commun., 1998, 16, (8), pp. 14511458.
    14. 14)
      • 2. Hochwald, B.M., Brink Ten, S.: ‘Achieving near-capacity on a multiple-antenna channel’, IEEE Trans. Commun., 2003, 51, (3), pp. 389–399.
    15. 15)
      • 4. Hanif, M.A., Lee, M.H.: ‘Analysis of a group decoding scheme for double-ABBA quasi-orthogonal STC’, IEEE Int. Conf. ICT Convergence, Jeju Island, South Korea, 2012, pp. 233234.
    16. 16)
      • 16. Alabed, S.J., Paredes, J.M., Gershman, A.B.: ‘A low complexity decoder for quasi-orthogonal space time block codes’, IEEE Trans. Wirel. Commun., 2011, 10, (3), pp. 988994.
    17. 17)
      • 30. Heng, L., Jalloul, L.M.A.: ‘Performance of the 3GPP LTE space–frequency block codes in frequency-selective channels with imperfect channel estimation’, IEEE Trans. Veh. Technol., 2015, 64, (5), pp. 18481855.
    18. 18)
      • 6. Jafarkhani, H.: ‘A quasi-orthogonal space-time block code’, IEEE Trans. Commun., 2001, 49, pp. 14.
    19. 19)
      • 8. Gupta, B., Saini, D.S.: ‘Space-time/space-frequency/space-time–frequency block coded MIMO-OFDM system with equalizers in quasi static mobile radio channels using higher tap order’, Wirel. Pers. Commun., 2013, 69, (4), pp. 19471968.
    20. 20)
      • 25. Kim, Il-M., Park, Y.O., Bang, Y.J.: ‘Fast ML detection for quasi-orthogonal STBCs of rate 2 in under-determined systems’, IEEE Trans. Commun., 2008, 56, (8), pp. 12491257.
    21. 21)
      • 22. Yang, Z., Liu, C., He, J.: ‘A new approach for fast generalized sphere decoding in MIMO systems’, IEEE Signal Process. Lett., 2005, 12, (1), pp. 4144.
    22. 22)
      • 21. Damen, M., Abed-Meraim, K., Belfiore, J.C.: ‘Generalized sphere decoding for asymmetrical space-time communication architecture’, Electron. Lett., 2000, 36, pp. 166167.
    23. 23)
      • 10. Saini, D.S., Upadhyay, M.: ‘Multiple rake combiners and performance improvement in 3G and beyond WCDMA systems’, IEEE Trans. Veh. Technol., 2009, 58, (7), pp. 33613370.
    24. 24)
      • 11. Damen, M.O., Gamal, H.E., Caire, G.: ‘On maximum-likelihood detection and the search for the closest lattice point’, IEEE Trans. Inf. Theory, 2003, 49, pp. 23892402.
    25. 25)
      • 26. Yuehua, D., Yide, J.W., Diouris, F., et al: ‘Robust fixed-complexity sphere decoders for rank-deficient MIMO systems’, IEEE Trans. Wirel. Commun., 2013, 12, (9), pp. 42974305.
    26. 26)
      • 3. Ham, J., Shim, S., Lee, C.: ‘A simplified adaptive modulation scheme for D-STTD systems with linear receivers’, IEEE Commun. Lett., 2005, 9, (12), pp. 10491051.
    27. 27)
      • 1. Gesbert, D., Shafi, M., Shiu, D.S, et al: ‘From theory to practice: an overview of MIMO space–time coded wireless systems’, IEEE J. Sel. Areas Commun., 2003, 21, (3), pp. 281302.
    28. 28)
      • 15. Yuen, C., Guan, Y., Tjhung, T.: ‘Quasi-orthogonal STBC with minimum decoding complexity’, IEEE Trans. Wirel. Commun., 2005, 4, (5), pp. 20892094.
    29. 29)
      • 7. Gupta, B., Saini, D.S.: ‘Moment generating function-based pairwise error probability analysis of concatenated low density parity check codes with Alamouti coded multiple input multiple output-orthogonal frequency division multiplexing systems’, IET Commun., 2014, 8, (3), pp. 399412.
    30. 30)
      • 27. Chen, Q., Jingxian, W., Zheng, Y.R., et al: ‘Two-stage list sphere decoding for under-determined multiple-input multiple-output systems’, IEEE Trans. Wirel. Commun., 2013, 12, (12), pp. 64766487.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.6014
Loading

Related content

content/journals/10.1049/iet-com.2018.6014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading