http://iet.metastore.ingenta.com
1887

Cross-layer design of T-ARQ and adaptive modulation and coding in a spectrum sharing with cooperative relaying system

Cross-layer design of T-ARQ and adaptive modulation and coding in a spectrum sharing with cooperative relaying system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an analysis for a cross-layer design of a combined adaptive modulation and coding (AMC) with a truncated automatic repeat request (T-ARQ) scheme in an underlay spectrum sharing cognitive radio employing an amplify-and-forward cooperative relaying system. The considered AMC employs a coded M-ary quadrature amplitude modulation scheme combined with a T-ARQ to improve the performance of the secondary user (SU) system in the considered cognitive radio. To establish the performance analysis, the cumulative distribution function (CDF) of the end-to-end signal-to-noise-ratio at the receiver side of the SU system is derived. Then, using the derived CDF, closed-form expressions are derived for three important performance metrics: the average spectral efficiency, the average packet-error-rate, and the outage probability. To evaluate the performance of the considered system, numerical results obtained from the derived closed-form formulas are presented and compared. In addition, to verify the validity of the analysis, Monte–Carlo simulation results are also provided.

References

    1. 1)
      • 1. Mitola, J., Maguire, G.Q., Jr: ‘Cognitive radio: making software radios more personal’, IEEE Personal Commun. Mag., 1999, 6, (4), pp. 1318.
    2. 2)
      • 2. Wyglinski, A.M., Nekovee, M., Hou, T.: ‘Cognitive radio communications and networks: principles and practice’ (Academic Press, San Diego, USA, 2009).
    3. 3)
      • 3. Shakkottai, S., Rappaport, T., Karlsson, P.: ‘Cross-layer design for wireless networks’, IEEE Commun. Mag., 2003, 41, pp. 7480.
    4. 4)
      • 4. Srivastana, V., Motani, M.: ‘Cross-layer design: a survey and the road ahead’, IEEE Commun. Mag., 2005, 43, pp. 112119.
    5. 5)
      • 5. Le, L., Hossain, E., Le-Ngoc, T.: ‘Interaction between radio link level truncated ARQ, and TCP in multi-rate wireless networks: a crosslayer performance analysis’, IET Commun., 2007, 1, (5), pp. 821830.
    6. 6)
      • 6. Liu, Q., Zhou, S., Giannakis, G.B.: ‘Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links’, IEEE Trans. Wirel. Commun., 2004, 3, (5), pp. 17461755.
    7. 7)
      • 7. Aniba, G., Aissa, S.: ‘Cross-layer designed adaptive modulation algorithm with packet combining and truncated ARQ over MIMO Nakagami fading channels’, IEEE Trans. Wirel. Commun., 2011, 10, (4), pp. 10261031.
    8. 8)
      • 8. Ramis, J., Femenias, G.: ‘Cross-layer QoS-constrained optimization of adaptive multi-rate wireless systems using infrastructure-based cooperative ARQ’, IEEE Trans. Wirel. Commun., 2013, 12, (5), pp. 24242435.
    9. 9)
      • 9. Hayes, J.: ‘Adaptive feedback communications’, IEEE Trans. Commun. Technol., 1968, 16, (1), pp. 2934.
    10. 10)
      • 10. Alouini, M.-S., Goldsmith, A.: ‘Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques’, IEEE Trans. Veh. Technol., 1999, 48, (4), pp. 11651181.
    11. 11)
      • 11. Alouini, M.-S., Goldsmith, A.J.: ‘Adaptive modulation over Nakagami fading channels’, Wirel. Pers. Commun., 2000, 13, (1), pp. 119143.
    12. 12)
      • 12. Hanzo, L., Wong, C.H., Yee, M.S.: ‘Adaptive wireless transceivers: turbo-coded, turbo-equalised and space-time coded TDMA, CDMA and OFDM systems’ (John Wiley & Sons Ltd, Hoboken, NJ, 2002).
    13. 13)
      • 13. Torabi, M., Haccoun, D.: ‘Performance analysis of cooperative diversity systems with opportunistic relaying and adaptive transmission’, IET Commun., 2011, 5, (3), pp. 264273.
    14. 14)
      • 14. Qi, Y., Hoshyar, R., Imran, M.A., et al: ‘H2-ARQ-relaying: spectrum and energy efficiency perspectives’, IEEE J. Sel. Areas Commun., 2011, 29, (8), pp. 15471558.
    15. 15)
      • 15. Chiu, H.-L., Wu, S.-H.: ‘Cross-layer performance analysis of cooperative ARQ with opportunistic multi-point relaying in mobile networks’, IEEE Trans. Wirel. Commun., 2018, 17, (6), pp. 41914205.
    16. 16)
      • 16. Musavian, L., Le-Ngoc, T.: ‘Cross-layer design for cognitive radios with joint AMC and ARQ under delay QoS constraint’. Proc. Int. Wireless Communication and Mobile Computing Conf. (IWCMC), Cyprus, 2012, pp. 419424.
    17. 17)
      • 17. Musavian, L., Aissa, S.: ‘Cross-layer analysis of cognitive radio relay networks under quality of service constraints’. IEEE Vehicular Technology Conf. (VTC), Barcelona, Spain, Spring 2009, pp. 15.
    18. 18)
      • 18. Musavian, L., Aissa, S., Lambotharan, S.: ‘Adaptive modulation in spectrum-sharing channels under delay quality-of-service constraints’, IEEE Trans. Veh. Technol., 2011, 60, (3), pp. 901911.
    19. 19)
      • 19. Musavian, L., Le-Ngoc, T.: ‘QoS-based power allocation for cognitive radios with AMC and ARQ in Nakagami-m fading channels’, Trans. Emerg. Telecommun. Technol., 2016, 27, (2), pp. 266277.
    20. 20)
      • 20. Yang, Y., Ma, H., Aïssa, S.: ‘Cross-layer combining of adaptive modulation and truncated ARQ under cognitive radio resource requirements’, IEEE Trans. Veh. Technol., 2012, 61, (9), pp. 40204030.
    21. 21)
      • 21. Saraç, S., Aygölü, Ü.: ‘ARQ-based cooperative spectrum sharing protocols for cognitive radio networks’, Wirel. Netw., 2018, https://doi.org/10.1007/s11276-018-1686-3.
    22. 22)
      • 22. Sendonaris, A., Erkip, E., Aazhang, B.: ‘User cooperation diversity. Part I. System description’, IEEE Trans. Commun., 2003, 51, (11), pp. 19271938.
    23. 23)
      • 23. Anghel, P., Kaveh, M.: ‘Exact symbol error probability of a cooperative network in a rayleigh-fading environment’, IEEE Trans. Wirel. Commun., 2004, 3, (5), pp. 14161421.
    24. 24)
      • 24. Torabi, M., Frigon, J.F., Haccoun, D.: ‘Adaptive transmission in amplify-and-forward cooperative communications using orthogonal space–time block codes under spatially correlated antennas’, IET Commun., 2015, 9, (14), pp. 16831690.
    25. 25)
      • 25. Torabi, M., Haccoun, D., Ajib, W.: ‘Performance analysis of cooperative diversity with relay selection over non-identically distributed links’, IET Commun., 2010, 4, (5), pp. 596605.
    26. 26)
      • 26. Duong, T.Q., da Costa, D.B., Elkashlan, M., et al: ‘Cognitive amplify-and-forward relay networks over Nakagami-m fading’, IEEE Trans. Veh. Technol., 2012, 61, (5), pp. 23682374.
    27. 27)
      • 27. Nechiporenko, T., Kalansuriya, P., Tellambura, C.: ‘Performance of optimum switching adaptive M-QAM for amplify-and-forward relays’, IEEE Trans. Veh. Technol., 2009, 58, (5), pp. 22582268.
    28. 28)
      • 28. Harsini, J.S., Zorzi, M.: ‘Effective capacity for multi-rate relay channels with delay constraint exploiting adaptive cooperative diversity’, IEEE Trans. Wirel. Commun., 2012, 11, (9), pp. 31363147.
    29. 29)
      • 29. Taki, M.: ‘Spectral efficiency optimisation in amplify and forward relay network with diversity using adaptive rate and adaptive power transmission’, IET Commun., 2013, 7, (15), pp. 16561664.
    30. 30)
      • 30. Bouida, Z., Ghrayeb, A., Qaraqe, K., et al: ‘Adaptive transmission schemes for MISO spectrum sharing systems: tradeoffs and performance analysis’, IEEE Trans. Wirel. Commun., 2014, 13, (10), pp. 53525365.
    31. 31)
      • 31. Torabi, M., Nerguizian, C.: ‘Adaptive transmission in spectrum sharing systems with Alamouti OSTBC under spatially correlated channels’, IEEE Trans. Veh. Technol., 2017, 66, (4), pp. 31313142.
    32. 32)
      • 32. Ghasemi, A., Sousa, E.S.: ‘Fundamental limits of spectrum-sharing in fading environments’, IEEE Trans. Wirel. Commun., 2007, 6, (2), pp. 649658.
    33. 33)
      • 33. Ban, T.W., Choi, W., Jung, B.C., et al: ‘Multi-user diversity in a spectrum sharing system’, IEEE Trans. Wirel. Commun., 2009, 8, (1), pp. 102106.
    34. 34)
      • 34. Suraweera, H.A., Smith, P.J., Shafi, M.: ‘Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge’, IEEE Trans. Veh. Technol., 2010, 59, (4), pp. 18111822.
    35. 35)
      • 35. Torabi, M., Nerguizian, C.: ‘Impact of antenna correlation on the BER performance of a cognitive radio network with Alamouti STBC’, IEEE Wireless Comm Letters, 2016, 5, (3), pp. 264267.
    36. 36)
      • 36. Torabi, M., Haccoun, D.: ‘Performance analysis of multi-user scheduling in a spectrum sharing with OSTBC under correlated antennas in a cognitive radio system’, IET Commun., 2018, 12, (4), pp. 384392.
    37. 37)
      • 37. Maaref, A., Aïssa, S.: ‘Cross-layer design for MIMO Nakagami fading channels in the presence of Gaussian channel estimation errors’. IEEE Canadian Conf. on Electrical and Computer Engineering, Saskatchewan, Canada, 2005, pp. 13801383.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5954
Loading

Related content

content/journals/10.1049/iet-com.2018.5954
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address