http://iet.metastore.ingenta.com
1887

GRA-based handover for dense small cells heterogeneous networks

GRA-based handover for dense small cells heterogeneous networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Ultra-dense small cell (SC) deployment in the future 5G network makes the architecture of the network as heterogeneous networks (HetNets). This is a good solution to boost the capacity of the network and extend its coverage. However, the dense SCs deployment has brought new challenges to the network including interference, frequent unnecessary handovers, and handover failures. Therefore, user equipment will suffer from a degraded quality of service. In this paper, the authors propose a grey rational analysis-based handover (GRA-HO) method in dense SCs HetNet. The proposed method combines the analytical hierarchy process technique to obtain the weight of the handover metrics and the GRA method to rank the available cells for the best handover target. The performance of the proposed method is evaluated and compared with the traditional multiple attribute decision-making methods including simple additive weighting and VIKOR methods. Results show that the GRA-HO method has outperformed the existing methods in terms of reducing the number of frequent handovers and link failures, in addition to enhancing energy efficiency.

References

    1. 1)
      • 1. Akhtar, A.M., Wang, X., Hanzo, L.: ‘Synergistic spectrum sharing in 5G HetNets: a harmonized SDN-enabled approach’, IEEE Commun. Mag., 2016, 54, (1), pp. 4047.
    2. 2)
      • 2. Chu, X., López-Pérez, D., Yang, Y., et al: ‘Heterogeneous cellular networks: theory, simulation and deployment’ (Cambridge University Press, Cambridge, 2013).
    3. 3)
      • 3. G.T. 36.839: ‘Evolved universal terrestrial radio access (EUTRA); mobility enhancements in heterogeneous networks’, 2013.
    4. 4)
      • 4. Alhabo, M., Zhang, L.: ‘Unnecessary handover minimization in two-tier heterogeneous networks’. IEEE 2017 13th Annual Conf. on Wireless On-demand Network Systems and Services (WONS), Wyoming, USA, 2017, pp. 160164.
    5. 5)
      • 5. Alhabo, M., Zhang, L., Nawaz, N.: ‘A trade-off between unnecessary handover and handover failure for heterogeneous networks’. 2017 Proc. 23th European Wireless Conf., VDE, Dresden, Germany, 2017.
    6. 6)
      • 6. Alhabo, M., Zhang, L., Oguejiofor, O.: ‘Inbound handover interference-based margin for load balancing in heterogeneous networks’. IEEE 2017 Int. Symp. on Wireless Communication Systems (ISWCS), Bologna, Italy, 2017, pp. 16.
    7. 7)
      • 7. Yu, G., Xu, Y., Yin, R., et al: ‘Interference coordination strategy based on nash bargaining for small-cell networks’, IET Commun., 2015, 9, (13), pp. 15831590.
    8. 8)
      • 8. Aghababaiyan, K., Maham, B.: ‘Qos-aware downlink radio resource management in OFDMA-based small cells networks’, IET Commun., 2017, 12, (4), pp. 441448.
    9. 9)
      • 9. Yassin, M., Lahoud, S., Ibrahim, M., et al: ‘Cooperative resource management and power allocation for multiuser OFDMA networks’, IET Commun., 2017, 11, (16), pp. 25522559.
    10. 10)
      • 10. Wu, S., Zeng, Z., Xia, H.: ‘Coalition-based sleep mode and power allocation for energy efficiency in dense small cell networks’, IET Commun., 2017, 11, (11), pp. 16621670.
    11. 11)
      • 11. Aghababaiyan, K., Maham, B.: ‘Downlink radio resource allocation in OFDMA-based small cells networks’. 2017 IEEE Int. Black Sea Conf. on Communications and Networking (BlackSeaCom), Istanbul, Turkey, 2017, pp. 15.
    12. 12)
      • 12. Nasser, N., Hasswa, A., Hassanein, H.: ‘Handoffs in fourth generation heterogeneous networks’, IEEE Commun. Mag., 2006, 44, (10), pp. 96103.
    13. 13)
      • 13. Huszak, A., Imre, S.: ‘Eliminating rank reversal phenomenon in GRA-based network selection method’. 2010 IEEE Int. Conf. on Communications (ICC), Cape Town, South Africa, 2010, pp. 16.
    14. 14)
      • 14. Al-Kashoash, H.A., Amer, H.M., Mihaylova, L., et al: ‘Optimization based hybrid congestion alleviation for 6lowpan networks’, IEEE Internet Things J., 2017, 4, pp. 20702081.
    15. 15)
      • 15. Wang, L., Kuo, G.-S.G.: ‘Mathematical modeling for network selection in heterogeneous wireless networks–a tutorial’, IEEE Commun. Surv. Tutor., 2013, 15, (1), pp. 271292.
    16. 16)
      • 16. Tawil, R., Pujolle, G., Salazar, O.: ‘A vertical handoff decision scheme in heterogeneous wireless systems’. IEEE Vehicular Technology Conf. (VTC Spring 2008), Singapore, 2008, pp. 26262630.
    17. 17)
      • 17. Yeh, C.-H.: ‘A problem-based selection of multi-attribute decision-making methods’, Int. Trans. Oper. Res., 2002, 9, (2), pp. 169181.
    18. 18)
      • 18. Bari, F., Leung, V.C.: ‘Automated network selection in a heterogeneous wireless network environment’, IEEE Netw., 2007, 21, (1), pp. 3440.
    19. 19)
      • 19. Mohamed, L., Leghris, C., Abdellah, A.: ‘A hybrid approach for network selection in heterogeneous multi-access environments’. IEEE 2011 4th IFIP Int. Conf. on New Technologies, Mobility and Security (NTMS), Paris, France, 2011, pp. 15.
    20. 20)
      • 20. Alhabo, M., Zhang, L.: ‘Load-dependent handover margin for throughput enhancement and load balancing in HetNets’, IEEE Access, 2018, 6, pp. 6771867731.
    21. 21)
      • 21. Stevens-Navarro, E., Wong, V.W.: ‘Comparison between vertical handoff decision algorithms for heterogeneous wireless networks’. IEEE 63rd Vehicular Technology Conf. (VTC 2006-Spring), Melbourne, Australia, 2006, vol. 2, pp. 947951.
    22. 22)
      • 22. Alhabo, M., Zhang, L.: ‘Multi-criteria handover using modified weighted TOPSIS methods for heterogeneous networks’, IEEE Access, 2018, 6, pp. 4054740558.
    23. 23)
      • 23. Zhang, J., De la Roche, G.: ‘Femtocells: technologies and deployment’ (John Wiley & Sons, Chichester, 2011).
    24. 24)
      • 24. Ariyakhajorn, J., Wannawilai, P., Sathitwiriyawong, C.: ‘A comparative study of random waypoint and gauss-markov mobility models in the performance evaluation of manet’. IEEE 2006 Int. Symp. on Communications and Information Technologies (ISCIT'06), Bangkok, Thailand, 2006, pp. 894899.
    25. 25)
      • 25. Q. Europe: ‘Hnb and hnb-macro propagation models’, 3GPP R4–071617, October 2007.
    26. 26)
      • 26. Stüber, G.L.: ‘Principles of mobile communication’ (Springer Science & Business Media, New York, 2011).
    27. 27)
      • 27. Singh, S., Andrews, J.G.: ‘Rate distribution in heterogeneous cellular networks with resource partitioning and offloading’. 2013 IEEE Global Communications Conf. (GLOBECOM), Atlanta, USA, 2013, pp. 37963801.
    28. 28)
      • 28. Saaty, T.L., Vargas, L.G.: ‘Models, methods, concepts & applications of the analytic hierarchy process’, vol. 175 (Springer Science & Business Media, New York, 2012).
    29. 29)
      • 29. Habbal, A., Goudar, S.I., Hassan, S.: ‘Context-aware radio access technology selection in 5 g ultra dense networks’, IEEE Access, 2017, 5, pp. 66366648.
    30. 30)
      • 30. Tzeng, G.-H., Huang, J.-J.: ‘Multiple attribute decision making: methods and applications’ (CRC Press, Boca Raton, 2011).
    31. 31)
      • 31. Sgora, A., Gizelis, C.A., Vergados, D.D.: ‘Network selection in a WiMax–WiFi environment’, Pervasive Mob. Comput., 2011, 7, (5), pp. 584594.
    32. 32)
      • 32. Lopez-Perez, D., Guvenc, I., Chu, X.: ‘Mobility management challenges in 3GPP heterogeneous networks’, IEEE Commun. Mag., 2012, 50, (12), pp. 7078.
    33. 33)
      • 33. Stevens-Navarro, E., Martinez-Morales, J., Pineda-Rico, U.: ‘Evaluation of vertical handoff decision algorithms based on MADM methods for heterogeneous wireless networks’, J. Appl. Res. Technol., 2012, 10, (4), pp. 534548.
    34. 34)
      • 34. MathWorks: ‘Counting the floating point operations (flops)’, 2015. Available at https://uk.mathworks.com.
    35. 35)
      • 35. Xiao, X., Tao, X., Jia, Y., et al: ‘An energy-efficient hybrid structure with resource allocation in OFDMA networks’. 2011 IEEE Wireless Communications and Networking Conf. (WCNC), Cancun, Mexico, 2011, pp. 14661470.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5938
Loading

Related content

content/journals/10.1049/iet-com.2018.5938
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address