access icon free Statistical characterisation and analysis of differential correlation-based frame detector

Next generation satellite systems are required to perform robust frame synchronisation in the presence of large frequency offsets at low carrier-to-noise ratios. Differential correlation-based frame acquisition is an appealing choice for these systems as it provides adequate performance with reasonable complexity. However, the theoretical characterisation of the multi-span differential correlation metric is still an open problem due to the fact that the correlation outputs with multiple delays are correlated. In this study, the authors derived novel closed-form approximations for the distribution of the multi-span differential correlation metric as well as the probabilities of miss-detection and false alarm. The close agreement between the simulated and theoretical receiver operating curves validates the analysis. This analysis can be used to characterise the performance of multi-span differential correlation-based frame synchroniser in terms of the number of delays without running computationally extensive Monte Carlo simulations.

Inspec keywords: satellite communication; correlation methods; probability; synchronisation; approximation theory

Other keywords: carrier-to-noise ratios; robust frame synchronisation; differential correlation-based frame detector; novel closed-form approximations; next generation satellite systems; differential correlation-based frame acquisition; statistical characterisation; multispan differential correlation-based frame synchroniser; theoretical characterisation; multispan differential correlation metric

Subjects: Other topics in statistics; Satellite communication systems; Interpolation and function approximation (numerical analysis); Signal processing and detection

References

    1. 1)
      • 22. Muhammad, T., Presti, L.L.: ‘Performance analysis of pre-correlation differential acquisition scheme’. Proc. European Workshop on GNSS Signals and Signals Processing, Noordwijk, Netherlands, December 2012.
    2. 2)
      • 7. Bi, G.-G.: ‘Performance of frame sync acquisition algorithms on the AWGN channel’, IEEE Trans. Commun., 1983, 31, (10), pp. 11961201.
    3. 3)
      • 30. Feng, Y., Wen, M., Zhang, J., et al: ‘Sum of arbitrarily correlated Gamma random variables with unequal parameters and its application in wireless communications’. Proc. Int. Conf. on Computing, Networking and Communications (ICNC), Kauai, HI, USA, February 2016, pp. 15.
    4. 4)
      • 21. Wei, Y., Bo, Z., Rob, W., et al: ‘Differential combining for acquiring weak GPS signals’, Signal Process., 2007, 87, (5), pp. 824840.
    5. 5)
      • 28. Lawrence, M., Jacquelyn, T.: ‘Univariate distribution relationships’, Am. Stat., 2008, 62, (1), pp. 4553.
    6. 6)
      • 14. Choi, Z.Y., Lee, Y.H.: ‘Frame synchronization in the presence of frequency offset’, IEEE Trans. Commun., 2002, 50, (7), pp. 10621065.
    7. 7)
      • 19. Nasraoui, L., Atallah, L.N., Siala, M.: ‘An efficient reduced-complexity two-stage differential sliding correlation approach for OFDM synchronization in the multipath channel’. Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Shanghai, China, April 2012, pp. 20592063.
    8. 8)
      • 9. Viterbi, A.J.: ‘Principles of spread spectrum communications (CDMA) (Addison-Wesley wireless communications series)’ (Addison-Wesley Publishing Company, Redwood City, CA, USA, 1995).
    9. 9)
      • 20. Kim, S., Kim, J., Shin, D.J., et al: ‘Error probability expressions for frame synchronization using differential correlation’, J. Commun. Netw., 2010, 12, (6), pp. 582591.
    10. 10)
      • 16. Dai, L., Wang, Z., Wamg, J., et al: ‘Joint code acquisition and Doppler frequency shift estimation for GPS signals’. Proc. IEEE 72nd Vehicular Technology Conf.-Fall, Ottawa, ON, Canada, September 2010, pp. 15.
    11. 11)
      • 24. Johnson, N.L., Kotz, S., Balakrishnan, N.: ‘Continuous univariate distributions’, vol. 2 (Wiley, New York, 1995, 2nd edn).
    12. 12)
      • 12. Pedone, R., Villanti, M., Salmi, P., et al: ‘Frame synchronization in frequency uncertainty’, IEEE Trans. Commun., 2010, 58, (4), pp. 12351246.
    13. 13)
      • 34. Sklar, B.: ‘Digital communications: fundamentals and applications (Prentice Hall communications engineering and emerging technologies series)’ (Prentice-Hall PTR, Upper Saddle River, NJ, USA, 2001).
    14. 14)
      • 11. Villanti, M., Salmi, P., Corazza, G.E.: ‘Differential post detection integration techniques for robust code acquisition’, IEEE Trans. Commun., 2007, 55, (11), pp. 21722184.
    15. 15)
      • 29. Papoulis, A.: ‘Probability, random variables, and stochastic processes’ (McGraw-Hill, New York, 1984, 2nd edn.), pp. 103104.
    16. 16)
      • 13. Mazzali, N., Stante, G., Bhavani, S.M.R.R., et al: ‘Performance analysis of noncoherent frame synchronization in satellite communications with frequency uncertainty’. Proc. IEEE Symp. on Communications and Vehicular Technology in the Benelux (SCVT), Luxembourg City, Luxembourg, November 2015, pp. 16.
    17. 17)
      • 8. Gansman, J.A., Fitz, M.P., Krogmeier, J.V.: ‘Optimum and suboptimum frame synchronization for pilot-symbol-assisted modulation’, IEEE Trans. Commun., 1997, 45, (10), pp. 13271337.
    18. 18)
      • 3. Gregoire, Y., Petcu, A., Calmettes, T., et al: ‘MEOSAR: New GNSS Role in Search and Rescue’. Working Papers Inside GNSS, November 2014.
    19. 19)
      • 10. Corazza, G.E., Salmi, P., Vanelli-Coralli, A., et al: ‘Differential post detection integration technique in the return link of satellite CDMA systems’. IEEE Seventh Int. Symp. on Spread Spectrum Techniques and Applications, Prague, Czech Republic, Czech Republic, 2002, pp. 233237.
    20. 20)
      • 27. Draper, N.R., Smith, H.: ‘Applied regression analysis’ (John Wiley, New York, USA, 1998, 3rd edn.).
    21. 21)
      • 25. ‘Chi-squared distribution’, Encyclopedia of Mathematics. Available at URL: http://www.encyclopediaofmath.org, accessed 20 March, 2019.
    22. 22)
      • 5. Massey, J.L.: ‘Optimum frame synchronisation’, IEEE Trans. Commun., 1972, 20, (2), pp. 115119.
    23. 23)
      • 1. Technical Report C/S T.018: 'Specification for second generation COSPAS-SARSAT 406-MHz distress beacons'. Tech. Rep., Issue 1, COSPAS-SARSAT, December, 2016.
    24. 24)
      • 2. Joo, I., Lee, J.H., et al: ‘Development and performance analysis of the second generation 406 MHz EPIRB’. Proc. 4th Int. Conf. Advanced Satellite Mobile Systems, Bologna, Italy, August 2008, pp. 333336.
    25. 25)
      • 31. ‘Sums of Gamma Random Variables’, Available at http://www-personal.umd.umich.edu/fmassey/gammaRV, accessed 27 March 2019.
    26. 26)
      • 26. Recommendation ITU-R M.1478-2: ‘Protection criteria for COSPASSARSAT search and rescue instruments in the band 406-406.1 MHz’. Tech. Rep., ITU-R, January 2012.
    27. 27)
      • 23. Huzak, M.: ‘Chi-square distribution'International encyclopedia of statistical science’ (Springer, Berlin, Heidelberg, 2011).
    28. 28)
      • 17. Junliang, L., Huabing, W., Rui, X., et al: ‘Pre-correlation and post-correlation differential acquisition techniques for BDS B1I signal’. Proc. of Int. Conf. on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shengyang, China, December 2013, pp. 28612864.
    29. 29)
      • 4. Martin, P., Calmettes, T., Gregoire, Y., et al: ‘The Cospas-Sarsat MEOSAR System: a Solution to Support ICAO GADSS Autonomous Distress Tracking Recommendation’. Working Papers Inside GNSS, June 2018.
    30. 30)
      • 15. Dong-Uk, L., Pansoo, K., Wonjin, S.: ‘Robust frame synchronization for low signal-to-noise ratio channels using energy-corrected differential correlation’, EURASIP J. Wirel. Commun. Netw., 2009, 2009, (8).
    31. 31)
      • 18. Shang, S., Hu, Y., Luo, J., et al: ‘A new acquisition method based on differential correlation’. Proc. 8th IEEE Int. Conf. on Communication Software and Networks (ICCSN), Beijing, China, June 2016, pp. 196200.
    32. 32)
      • 33. Welch, B.L.: ‘The generalization of ‘student's’ problem when several different population variances are involved’, Biometrika, 1947, 34, pp. 2835.
    33. 33)
      • 32. Satterthwaite, F.E.: ‘An approximate distribution of estimates of variance components’, Biometrics Bull., 1946, 87, pp. 110114.
    34. 34)
      • 6. Nielsen, P.: ‘Some optimum and suboptimum frame synchronizers for binary data in Gaussian noise’, IEEE Trans. Commun., 1973, 21, (6), pp. 770772.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5882
Loading

Related content

content/journals/10.1049/iet-com.2018.5882
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading