HILS: hybrid indoor localisation system using Wi-Fi received signal strength and inertial sensor's measurements of smart-phone

HILS: hybrid indoor localisation system using Wi-Fi received signal strength and inertial sensor's measurements of smart-phone

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a smart-phone-based hybrid indoor localisation system (HILS), which integrates two different localisation approaches, i.e., pedestrian dead reckoning (PDR) and Wi-Fi-based localisation to compensate the limits of each other. In PDR, the localisation accuracy degrades continuously when the moving distance increases from the starting reference point. However, Wi-Fi-based trilateration method requires the Wi-Fi signals from at least three access points (APs). In this study, the authors propose a more efficient novel Heron-bilateration-based position determination (HBPD) technique, which requires the Wi-Fi signals from only two APs to locate the mobile device. The proposed HILS utilises the HBPD technique to reset the bias drift errors involved with inertial sensors, and compensate the unavailability of strong Wi-Fi signals from APs using the PDR method. In this work, an experimental testbed is developed to collect the Wi-Fi signals and evaluate the proposed method. The proposed HILS is also compared with five other benchmark methods for two different trajectories and the experimental results show that the mean localisation error is decreased up to 1.68 and 1.96 m, which indicate the improvement by 16.83 and 20.97% for both the trajectories, respectively, in comparison with the best performing method among the benchmark methods.


    1. 1)
      • 1. Brena, R.F., García-Vázquez, J.P., Galván-Tejada, C.E., et al: ‘Evolution of indoor positioning technologies: a survey’, J. Sensors, 2017, 2017, pp. 121.
    2. 2)
      • 2. Shang, J., Gu, F., Hu, X., et al: ‘Apfiloc: an infrastructure-free indoor localization method fusing smartphone inertial sensors, landmarks and map information’, Sensors, 2015, 15, (10), pp. 2725127272.
    3. 3)
      • 3. Deng, Z.A., Hu, Y., Yu, J., et al: ‘Extended Kalman filter for real time indoor localization by fusing WIFI and smartphone inertial sensors’, Micromachines, 2015, 6, (4), pp. 523543.
    4. 4)
      • 4. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., 1998, 454, pp. 903995.
    5. 5)
      • 5. Zhao, Y., Liu, K., Ma, Y., et al: ‘Similarity analysis-based indoor localization algorithm with backscatter information of passive UHF RFID tags’, IEEE Sens. J., 2017, 17, (1), pp. 185193.
    6. 6)
      • 6. Marquez, A., Tank, B., Meghani, S.K., et al: ‘Accurate uwb and imu based indoor localization for autonomous robots’. 2017 IEEE 30th Canadian Conf. on Electrical and Computer Engineering (CCECE), Ontario, Canada, 2017, pp. 14.
    7. 7)
      • 7. Kriz, P., Maly, F., Kozel, T.: ‘Improving indoor localization using bluetooth low energy beacons’, Mob. Inf. Syst., 2016, 2016, pp. 111.
    8. 8)
      • 8. Liang, J.Z., Corso, N., Turner, E., et al: ‘Image-based positioning of mobile devices in indoor environments’, in Choi, J., Friedland, G. (Eds.): ‘Multimodal location estimation of videos and images’ (Springer, USA, 2015), pp. 8599.
    9. 9)
      • 9. Kotaru, M., Joshi, K., Bharadia, D., et al: ‘Spotfi: decimeter level localization using wifi’. ACM SIGCOMM Computer Communication Review, New York, USA, 2015, vol. 45, pp. 269282.
    10. 10)
      • 10. Yassin, A., Nasser, Y., Awad, M., et al: ‘Recent advances in indoor localization: a survey on theoretical approaches and applications’, IEEE Commun. Surv. Tutor., 2016, 19, (2), pp. 13271346.
    11. 11)
      • 11. Lu, G., Yan, Y., Ren, L., et al: ‘Where am i in the dark: exploring active transfer learning on the use of indoor localization based on thermal imaging’, Neurocomputing, 2016, 173, pp. 8392.
    12. 12)
      • 12. Ramezani-Akhmareh, A., Lazarescu, M.T., Bin-Tariq, O., et al: ‘A tagless indoor localization system based on capacitive sensing technology’, Sensors, 2016, 16, (9), p. 1448.
    13. 13)
      • 13. Rivera-Rubio, J., Alexiou, I., Bharath, A.A.: ‘Appearance-based indoor localization: a comparison of patch descriptor performance’, Pattern Recognit. Lett., 2015, 66, pp. 109117.
    14. 14)
      • 14. Kivimäki, T., Vuorela, T., Peltola, P., et al: ‘A review on device-free passive indoor positioning methods’, Int. J. Smart Home, 2014, 8, (1), pp. 7194.
    15. 15)
      • 15. Çelik, G., Celebi, H., Partal, H.P., et al: ‘An experimental study of indoor RSS-based RF fingerprinting localization using GSM and WI-FI signals’, Turk. J. Electr. Eng. Comput. Sci., 2017, 25, (4), pp. 27272736.
    16. 16)
      • 16. Tiwari, S., Jain, V.K.: ‘Optimum grid size estimation using fuzzy-AHP for radio fingerprinting based indoor localization’. IEEE 2018 41st Int. Conf. on Telecommunications and Signal Processing (TSP), Athens, Greece, 2018, pp. 15.
    17. 17)
      • 17. Farrag, M., Abo-Zahhad, M., Doss, M., et al: ‘A new localization technique for wireless sensor networks using social network analysis’, Arab. J. Sci. Eng., 2017, 42, (7), pp. 28172827.
    18. 18)
      • 18. Mannini, A., Sabatini, A.M.: ‘Accelerometry-based classification of human activities using markov modeling’, Comput. Intell. Neurosci., 2011, 2011, p. 4.
    19. 19)
      • 19. Barralon, P., Vuillerme, N., Noury, N.: ‘Walk detection with a kinematic sensor: frequency and wavelet comparison’. IEEE 28th Annual Int. Conf. on Engineering in Medicine and Biology Society (EMBS'06), New York, USA, 2006, pp. 17111714.
    20. 20)
      • 20. Dirican, A.C., Aksoy, S.: ‘Step counting using smartphone accelerometer and fast fourier transform’, Sigma J. Eng. Nat. Sci., 2017, 8, pp. 175182.
    21. 21)
      • 21. Wang, J.H., Ding, J.J., Chen, Y., et al: ‘Real time accelerometer-based gait recognition using adaptive windowed wavelet transforms’. 2012 IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), Kaohsiung, Taiwan, 2012, pp. 591594.
    22. 22)
      • 22. Kavanagh, J.J., Menz, H.B.: ‘Accelerometry: a technique for quantifying movement patterns during walking’, Gait Posture, 2008, 28, (1), pp. 115.
    23. 23)
      • 23. Kasebzadeh, P., Fritsche, C., Hendeby, G., et al: ‘Improved pedestrian dead reckoning positioning with gait parameter learning’. IEEE 19th Int. Conf. on Information Fusion, Heidelberg, Germany, 2016, pp. 379385.
    24. 24)
      • 24. Martin, E.: ‘Novel method for stride length estimation with body area network accelerometers’. 2011 IEEE Topical Conf. on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, Arizona, USA, 2011, pp. 7982.
    25. 25)
      • 25. Harle, R.: ‘A survey of indoor inertial positioning systems for pedestrians’, Commun. Surv. Tutor., 2013, 15, (3), pp. 12811293.
    26. 26)
      • 26. Ho, N.H., Truong, P.H., Jeong, G.M.: ‘Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone’, Sensors, 2016, 16, (9), pp. 113.
    27. 27)
      • 27. Xing, H., Li, J., Hou, B., et al: ‘Pedestrian stride length estimation from IMU measurements and ann based algorithm’, J. Sens., 2017, 2017, pp. 110.
    28. 28)
      • 28. Beibei, W., Tao, C., Zhao, Z.: ‘An improved in stride estimation algorithm of pedestrian dead reckoning’. IEEE 9th Int. Conf. on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, Hunan, China, 2017, pp. 154157.
    29. 29)
      • 29. Do, T.N., Liu, R., Yuen, C., et al: ‘Personal dead reckoning using IMU mounted on upper torso and inverted pendulum model’, IEEE Sens. J., 2016, 16, (21), pp. 76007608.
    30. 30)
      • 30. Beauregard, S., Haas, H.: ‘Pedestrian dead reckoning: a basis for personal positioning’. Proc. Third Workshop on Positioning, Navigation and Communication, Hannover, Germany, 2006, pp. 2735.
    31. 31)
      • 31. Groves, P.D., Pulford, G.W., Littlefield, C.A., et al: ‘Inertial navigation versus pedestrian dead reckoning: optimizing the integration’. Proc. ION GNSS, Fort Worth, Texas, 2007, pp. 20432055.
    32. 32)
      • 32. Lo, C.C., Chiu, C.P., Tseng, Y.C., et al: ‘A walking velocity update technique for pedestrian dead-reckoning applications’. IEEE 22nd Int. Symp. on Personal Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada, 2011, pp. 12491253.
    33. 33)
      • 33. Tian, Z., Zhang, Y., Zhou, M., et al: ‘Pedestrian dead reckoning for marg navigation using a smartphone’, EURASIP J. Adv. Signal Process., 2014, 2014, (1), p. 65.
    34. 34)
      • 34. Li, Y., Zhuang, Y., Lan, H., et al: ‘A hybrid WIFI/magnetic matching/pdr approach for indoor navigation with smartphone sensors’, IEEE Commun. Lett., 2016, 20, (1), pp. 169172.
    35. 35)
      • 35. Ban, R., Kaji, K., Hiroi, K., et al: ‘Indoor positioning method integrating pedestrian dead reckoning with magnetic field and WIFI fingerprints’. IEEE 2015 Eighth Int. Conf. on Mobile Computing and Ubiquitous Networking (ICMU), Hokkaido, Japan, 2015, pp. 167172.
    36. 36)
      • 36. Guo, X., Shao, W., Zhao, F., et al: ‘Wimag: multimode fusion localization system based on magnetic/wifi/pdr’. IEEE 2016 Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 2016, pp. 18.
    37. 37)
      • 37. Li, Y., Zhuang, Y., Lan, H., et al: ‘WIFI-aided magnetic matching for indoor navigation with consumer portable devices’, Micromachines, 2015, 6, (6), pp. 747764.
    38. 38)
      • 38. Zhu, N., Zhao, H., Feng, W., et al: ‘A novel particle filter approach for indoor positioning by fusing wifi and inertial sensors’, Chin. J. Aeronaut., 2015, 28, (6), pp. 17251734.
    39. 39)
      • 39. Liu, R., Yuen, C., Do, T.N., et al: ‘Fusing similarity-based sequence and dead reckoning for indoor positioning without training’, IEEE Sens. J., 2017, 17, (13), pp. 41974207.
    40. 40)
      • 40. Zhuang, Y., Lan, H., Li, Y., et al: ‘PDR/INS/WIFI integration based on handheld devices for indoor pedestrian navigation’, Micromachines, 2015, 6, (6), pp. 793812.
    41. 41)
      • 41. Chen, Z., Zou, H., Jiang, H., et al: ‘Fusion of wifi, smartphone sensors and landmarks using the kalman filter for indoor localization’, Sensors, 2015, 15, (1), pp. 715732.
    42. 42)
      • 42. Lu, Q., Liao, X., Xu, S., et al: ‘A hybrid indoor positioning algorithm based on WIFI fingerprinting and pedestrian dead reckoning’. IEEE Proc. of Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016, pp. 16.
    43. 43)
      • 43. Cho, H., Kwon, Y.: ‘RSS-based indoor localization with PDR location tracking for wireless sensor networks’, AEU-Int. J. Electron. Commun., 2016, 70, (3), pp. 250256.
    44. 44)
      • 44. Rahman, M., Park, Y., Kim, K.D.: ‘RSS-based indoor localization algorithm for wireless sensor network using generalized regression neural network’, Arabian J. Sci. Eng., 2012, 37, (4), pp. 10431053.
    45. 45)
      • 45. Tiwari, S., Jain, V.K.: ‘Heron-bilateration based location estimation technique for indoor wlan’. IEEE Int. Conf. on Information Networking (ICOIN), Da Nang, Vietnam, 2017, pp. 1317.
    46. 46)
      • 46. Rappaport, T.S.: ‘Wireless communications: principles and practice’, vol. 2 (Prentice-Hall PTR, New Jersey, 1996).

Related content

This is a required field
Please enter a valid email address