Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Subarray hybrid precoding with finite-resolution PSs for massive MIMO capacity maximisation

Subarray hybrid precoding with finite-resolution PSs for massive MIMO capacity maximisation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The addition of analogue processing to the digital precoding, known as hybrid beamforming (HB), is an efficient solution for massive multiple-input multiple-output (MIMO) systems. The design of a phase shifter (PS) network plays an important role in the complete precoder operation because it necessitates accurate components for realising precise phases, and that can be costly. Finite resolution PSs are good alternatives because they need simpler hardware implementation than those with infinite resolution. However, the degradation of performance of a MIMO system with very low-resolution PSs is significant. Although recent studies suggest adding extra radio frequency (RF) chains to substitute for the accuracy of the PSs, it is complex, expensive and not energy efficient. This study demonstrates that HB with low-resolution PSs can realise a high performance without increasing the number of RF chains. The authors proposed solution relies on a proper selection of the weights of the RF beamformer, hence exploiting the structure of the multipath propagation channel to maximise the system capacity. They also show that separating antennas from each other by sufficient distance, results in a less correlated channel, and thus, a minimal loss in the capacity and the antenna gains are assured.

References

    1. 1)
      • 35. Krieger, J.D., Yeang, C.-P., Wornell, G.W: ‘Dense delta-sigma phased arrays’, IEEE Trans. Antennas Propag., 2013, 61, (4), pp. 18251837.
    2. 2)
      • 31. Zhou, L., Ohashi, Y.: ‘Hybrid precoding with data stream adaptation for high throughput mmWave MIMO systems’. Proc. IEEE Wireless Communications and Networking Conf., Doha, 2016, pp. 16.
    3. 3)
      • 10. Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., et al: ‘MIMO precoding and combining solutions for millimeter-wave systems’, IEEE Commun. Mag., 2014, 52, (12), pp. 122131.
    4. 4)
      • 11. Seleem, H., Sulyman, A.I., Alsanie, A: ‘Hybrid precoding-beamforming design with hadamard RF codebook for mmWave large-scale MIMO systems’, IEEE Access, 2017, 5, pp. 68136823.
    5. 5)
      • 29. Wu, S.H., Wang, J.W., Chen, J.Y.: ‘Reconfigurable hybrid beamforming for dual-polarized mmWave MIMO channels’. IEEE Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, 2016, pp. 16.
    6. 6)
      • 38. Bhattacharrayya, A.K.: ‘Phased array antennas, Phase shifter’ (Wiley Sons, Inc., NJ, 2006).
    7. 7)
      • 17. Payami, S., Mir, G., Dianati, M: ‘Hybrid beamforming for large antenna arrays with phase shifter selection’, IEEE Trans. Wirel. Commun., 2016, 15, (11), pp. 72587271.
    8. 8)
      • 14. Mendez-Rial, R., Rusu, C., González-Prelcic, N., et al: ‘Hybrid mimo architectures for millimeter wave communications: phase shifters or switches?’, IEEE Access, 2016, 4, pp. 247267.
    9. 9)
      • 28. Ni, W., Dong, X.: ‘Hybrid block diagonalization for massive multiuser MIMO systems’, IEEE Trans. Commun., 2016, 64, (1), pp. 201211.
    10. 10)
      • 41. Liang, L., Xu, W., Dong, X.: ‘Low-complexity hybrid precoding in massive multiuser MIMO systems’, IEEE Wirel. Commun. Lett., 2014, 3, (6), pp. 653656.
    11. 11)
      • 23. Niakan, N.: ‘Mutual coupling reduction between closely spaced U-slot patch antennas by optimizing array configuration and its applications in MIMO’. PhD thesis, University of Kansas, 2014.
    12. 12)
      • 9. Alkhateeb, A., Leus, G., Heath, R.W.Jr.: ‘Limited feedback hybrid precoding for multi-user millimeter wave systems’, IEEE Trans. Wirel. Commun., 2015, 14, (11), pp. 64816494.
    13. 13)
      • 39. Chen, C., Dong, Y., Cheng, X., et al: ‘Low-resolution PSs based hybrid precoding for multi-user communication systems’, IEEE Trans. Veh. Technol., 2018, 67, (7), pp. 60376047.
    14. 14)
      • 22. Clerckx, B., Craeye, C., Vanhoenacker-Janvier, D., et al: ‘Impact of antenna coupling on 2 times 2 mimo communications’, IEEE Trans. Veh. Technol., 2007, 56, (3), pp. 10091018.
    15. 15)
      • 33. Warnick, K.F., Jensen, M.A.: ‘Multiple input, multiple output (MIMO) communications’, class notes for ECEn 665, antennas and propagation for wireless communications' (Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, Winter, 2017).
    16. 16)
      • 12. Poon, A.S.Y., Taghivand, M: ‘Supporting and enabling circuits for antenna arrays in wireless communications’, Proc. IEEE, 2012, 100, (7), pp. 22072218.
    17. 17)
      • 30. Zhang, J., Wiesel, A., Haardt, M.: ‘Low rank approximation based hybrid precoding schemes for multi-carrier single-user massive MIMO systems’. Proc. IEEE IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Shanghai, China, March 2016.
    18. 18)
      • 1. Wang, S., Liu, Y., Zhang, W., et al: ‘Achievable rates of full-duplex massive MIMO relay systems over Rician fading channels’, IEEE Trans. Veh. Technol., 2017, 66, (11), pp. 98259837.
    19. 19)
      • 7. Yu, Q., Han, C., Bai, L., et al: ‘Low-complexity multiuser detection in millimeter-wave systems based on opportunistic hybrid beamforming’, IEEE Trans. Veh. Technol., 2018, 67, (10), 1012910133.
    20. 20)
      • 3. Xia, X., Xu, K., Zhang, D., et al: ‘Beam-domain full-duplex massive MIMO: realizing co-time co-frequency uplink and downlink transmission in the cellular system’, IEEE Trans. Veh. Technol., 2017, 66, (10), pp. 88458862.
    21. 21)
      • 26. Jiang, M., Yue, G., Rangarajan, S.: ‘MIMO transmission with rank adaptation for multi-gigabit 60 GHz wireless’. Proc. IEEE Globecom, Miami, FL, December 2010, pp. 15.
    22. 22)
      • 27. Park, S., Alkhateeb, A., Heath, R.W.: ‘Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems’, IEEE Trans. Wirel. Commun., 2016, 16, (5), pp. 29072920.
    23. 23)
      • 2. Bai, L., Li, T., Liu, J., et al: ‘Large-scale MIMO detection using MCMC approach with blockwise sampling’, IEEE Trans. Commun., 2016, 64, (9), pp. 36973707.
    24. 24)
      • 6. Suyama, S., Okuyama, T., Inoue, Y., et al: ‘5G multi-antenna technology’, NTTDOCOMO Tech. J., 2016, 17, (4), pp. 2939.
    25. 25)
      • 13. Tabesh, M., Chen, J., Marcu, C., et al: ‘A 65 nm cmos 4-element sub-34 mw/element 60 ghz phased-array transceiver’, IEEE J. Solid-State Circuits, 2011, 46, (12), pp. 30183032.
    26. 26)
      • 25. Alarfaj, M., Liu, H.: ‘Subarray hybrid precoding for massive MIMO capacity maximization’. IEEE 17th Int. Conf. on Ubiquitous Wireless Broadband (ICUWB), Salamanca, 2017, pp. 15.
    27. 27)
      • 19. Wu, Y., Linnartz, J.P., Bergmans, J.W.M., et al: ‘Effects of antenna mutual coupling on the performance of MIMO systems’. 29th Symp. on Information Theory in the Benelux, Leuven, Belgium, 2008.
    28. 28)
      • 34. Montori, S., Fritzsch, C., Marcaccioli, L., et al: ‘Design and measurements of a 1-bit reconfigurable elementary cell for large electronic steerable reflect arrays’. European Microwave Conf. (EuMC), Paris, France, 2010, pp. 918921.
    29. 29)
      • 32. Zhu, J., Xu, W., Wang, N.: ‘Secure massive MIMO systems with limited RF chains’, IEEE Trans. Veh. Technol., 2016, 66, (6), pp. 54555460.
    30. 30)
      • 5. Zucchelli, G., Chen, H., Rick, G.: ‘Hybrid-beamforming design for 5G wireless communications’, Electron. Des., 2016, https://www.electronicdesign.com/communications/hybrid-beamforming-design-5g-wireless-communications.
    31. 31)
      • 15. Rusu, C., Mendez-Rial, R., González-Prelcic, N., et al: ‘Low complexity hybrid precoding strategies for millimeter wave communication systems’, IEEE Trans. Wirel. Commun., 2016, 15, (12), pp. 83808393.
    32. 32)
      • 16. Sohrabi, F., Yu, W: ‘Hybrid beamforming with finite-resolution phase shifters for large-scale mimo systems’. Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 2015, pp. 136140.
    33. 33)
      • 24. Sohrabi, F., Yu, W.: ‘Hybrid digital and analog beamforming design for large-scale antenna arrays’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 501513.
    34. 34)
      • 21. Vaughan, R., Andersen, J.: ‘Antenna diversity in mobile communications’, IEEE Trans. Veh. Technol., 1987, 36, (4), pp. 149172.
    35. 35)
      • 36. Araújo, D.C., Karipidis, E., de Almeida, A.L.F., et al: ‘Hybrid beamforming design with finite-resolution phase-shifters for frequency selective massive MIMO channels’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017, pp. 64986502.
    36. 36)
      • 4. Xia, X., Xu, K., Wang, Y., et al: ‘A 5G-enabling technology: benefits, feasibility, and limitations of in-band full-duplex mMIMO’, IEEE Veh. Technol. Mag., 2018, 13, (3), pp. 8190.
    37. 37)
      • 8. El Ayach, O., Abu-Surra, S., Rajagopal, S., et al: ‘Spatially sparse precoding in millimeter wave MIMO systems’, IEEE Trans. Wirel. Commun., 2014, 13, (3), pp. 14991513.
    38. 38)
      • 20. Gupta, I., Ksienski, A.A: ‘Effect of mutual coupling on the performance of adaptive arrays’, IEEE Trans. Antennas Propag., 1983, 31, (5), pp. 785791.
    39. 39)
      • 18. Xia, X., Zhang, D., Xu, K., et al: ‘Hardware impairments aware transceiver for full-duplex massive MIMO relaying’, IEEE Trans. Signal Process., 2015, 63, (24), pp. 65656580.
    40. 40)
      • 37. Chang, S.-H., Hong, W., Oh, J: ‘Quantization effects of phase shifters on 5G mmwave antenna arrays’. IEEE Int. Symp. on Antennas and Propagation, Stockholm, Sweden, 2015.
    41. 41)
      • 40. Mathworks.com: ‘Hybrid beamforming for massive MIMO phased array systems’. Available at https://www.mathworks.com/content/dam/mathworks/white-paper/gated/93096v00_Beamforming_Whitepaper.pdf (accessed 31 May 2018).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5836
Loading

Related content

content/journals/10.1049/iet-com.2018.5836
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address