Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Survey on half- and full-duplex relay based cooperative communications and its potential challenges and open issues using Markov chains

In this study, the authors address a brief survey on the half-duplex (HD) and full duplex (FD) relay based cooperative communications. Some nodes in wireless communication acting as relays can share their resource with other nodes by exploiting relaying technologies to achieve cooperative communications. Generally, the buffer-less HD relaying (HDR) limits the performance of a wireless system when the worst condition of transmitting and receiving channels of the relay occurs. The HDR is affected by pre-log factor one-half that reduces the spectral-efficiency of the wireless system. Significantly, advanced technologies in self-interference cancellation enable the FD relaying (FDR) in the cooperative wireless system to achieve high spectral efficiency. Recently, the buffer-aided FDR provides significant performance gains by exploring the concepts of Markov chain of queuing theory at relay as compared to either buffer-aided or buffer-less HDR. Finally, they outline several research challenges associated with small size, interference management, and fading channel for FDR. In addition, some research challenges remain for further investigation that is related to physical-layer security, FDR with a cross-layer approach and two-way buffer-aided FDR.

References

    1. 1)
      • 20. Tarokh, V., Seshadri, N., Calderbank, A.R.: ‘Space–time codes for high data rate wireless communication: performance criterion and code construction’, IEEE Trans. Inf. Theory, 1998, 44, (2), pp. 744765.
    2. 2)
      • 75. Qiao, D., Gursoy, M.C.: ‘Statistical delay tradeoffs in buffer-aided two-hop wireless communication systems’, IEEE Trans. Commun., 2016, 64, (11), pp. 45634577.
    3. 3)
      • 67. Wang, Q., Dong, Y., Xu, X., et al: ‘Outage probability of full-duplex AF relaying with processing delay and residual self-interference’, IEEE Commun. Lett., 2015, 17, (5), pp. 783786.
    4. 4)
      • 50. Jamali, V., Zlatanov, N., Ikhlef, A., et al: ‘Achievable rate region of the bidirectional buffer-aided relay channel with block fading’, IEEE Trans. Inf. Theory, 2014, 60, (11), pp. 70907111.
    5. 5)
      • 13. Hunter, T.E., Nosratinia, A.: ‘Cooperation diversity through coding’. Proc. IEEE Int. Symp. on Information Theory, Lausanne, Switzerland, July 2002, p. 220.
    6. 6)
      • 64. Amjad, M.S., Nawaz, H., Ozsoy, K., et al: ‘A Low-complexity full-duplex radio implementation with a single antenna’, IEEE Trans. Veh. Technol., 2018, 67, (3), pp. 22062218.
    7. 7)
      • 69. Goyal, S., Liu, P., Hua, S., et al: ‘Analyzing a full-duplex cellular system’. 47th Annual Conf. on Information Sciences and Systems (CISS), Baltimore, MD, USA, March 2013.
    8. 8)
      • 55. Liu, G., Yu, F.R., Ji, H., et al: ‘In-band full-duplex relaying: A survey, research issues and challenges’, IEEE Commun. Surv. Tutorials, 2015, 17, (2), pp. 500524.
    9. 9)
      • 81. Zlatanov, N., Hranilovic, D., Evans, J.S.: ‘Buffer-aided relaying improves throughput of full-duplex relay networks with fixed-rate transmissions’, IEEE Commun. Lett., 2016, 20, (12), pp. 24462447.
    10. 10)
      • 59. Everett, E., Sahai, A., Sabharwal, A.: ‘Passive self-interference suppression for full duplex infrastructure nodes’, IEEE Trans. Wirel. Commun., 2014, 13, (2), pp. 680694.
    11. 11)
      • 65. Kim, T.M., Paulraj, A.: ‘Outage probability of amplify-and-forward cooperation with full duplex relay’. IEEE Wireless Communications and Networking Conf. (WCNC), Shanghai, China, April 2012, pp. 7579.
    12. 12)
      • 19. Alamouti, S.M.: ‘A simple transmit diversity technique for wireless communications’, IEEE J. Sel. Areas Commun., 1998, 16, (8), pp. 14511458.
    13. 13)
      • 73. Qiao, D.: ‘Effective capacity of buffer-aided full-duplex relay systems with selection relaying’, IEEE Trans. Commun., 2016, 64, (1), pp. 117129.
    14. 14)
      • 15. Stefanov, A., Erkip, E.: ‘Cooperative coding for wireless networks’. 4th Int. Workshop on Mobile and Wireless Communications Network, Stockholm, Sweden, September 2002, pp. 273277.
    15. 15)
      • 56. Choi, J.I., Jain, M., Srinivasan, K., et al: ‘Achieving single channel, full duplex wireless communication’. Proc. ACM MobiCom'10, Chicago, IL, September 2010, pp. 112.
    16. 16)
      • 86. Li, C., Chen, Z., Wang, Y., et al: ‘Outage analysis of the full-duplex decode-and-forward two-way relay system’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 40734086.
    17. 17)
      • 41. Popovski, P., Yomo, H.: ‘Wireless network coding by amplify-and-forward for bi-directional traffic flows’, IEEE Commun. Lett., 2007, 11, (1), pp. 1618.
    18. 18)
      • 83. Shafie, A.E., Sultan, A., Dhahir, N.A.: ‘Physical-layer security of a buffer-aided full duplex relaying system’, IEEE Commun. Lett., 2016, 20, (9), pp. 18561859.
    19. 19)
      • 3. Meulen, E.C.V.D.: ‘Transmission of information in a t-terminal discrete memoryless channel’. Technical Report, Department of Statistics, University of California, Berkeley, CA, 1968.
    20. 20)
      • 11. Laneman, J.N., Wornell, G.W., Tse, D.N.C.: ‘An efficient protocol for realizing cooperative diversity in wireless networks’. Proc. 2001 IEEE Int. Symp. on Information Theory, Washington, DC, USA, June 2001, p. 294.
    21. 21)
      • 91. Li, Y., Vucetic, B.: ‘On the performance of a simple adaptive relaying protocol for wireless relay networks’. Proc. IEEE Semiannual Vehicular Technology Conf., Singapore, May 2008, pp. 24002405.
    22. 22)
      • 58. Ahmed, E., Eltawil, A.M., Sabharwal, A.: ‘Rate gain region and design tradeoffs for full-duplex wireless communications’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 35563565.
    23. 23)
      • 57. Duarte, M., Sabharwal, A.: ‘Full-duplex wireless communications using off-the-shelf radios: feasibility and first results’. 2010 Conf. Record of the Forty Fourth Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, November 2010, pp. 15581562.
    24. 24)
      • 12. Hunter, T.E., Nosratinia, A.: ‘Coded cooperation under slow fading, fast fading, and power control’. Conf. Record of the Thirty-Sixth Asilomar Conf. on Signals, Systems and Computers 2002, Pacific Grove, CA, USA, November 2002, vol. 1, pp. 118122.
    25. 25)
      • 85. Li, L., Dong, C., Wang, L., et al: ‘Spectral-efficiency bidirectional decode-and-forward relaying for full-duplex communication’, IEEE Trans. Veh. Technol., 2016, 65, (9), pp. 70107020.
    26. 26)
      • 26. Fan, Y., Wang, C., Thompson, J., et al: ‘Recovering multiplexing loss through successive relaying using repetition coding’, IEEE Trans. Wirel. Commun., 2007, 6, (12), pp. 44844493.
    27. 27)
      • 98. Dang, S., Chen, G., Coon, J.P.: ‘Multicarrier relay selection for full-duplex relay-assisted OFDM D2D systems’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 72047218.
    28. 28)
      • 70. Shao, S., Liu, D., Deng, K., et al: ‘Analysis of carrier utilization in full-duplex cellular networks by dividing the co-channel interference region’, IEEE Commun. Lett., 2014, 18, (6), pp. 10431046.
    29. 29)
      • 5. Cover, T., Gamal, A.E.: ‘Capacity theorems for the relay channels’, IEEE Trans. Inf. Theory, 1979, 25, (5), pp. 572584.
    30. 30)
      • 16. Dohler, M.: ‘A novel statistical indoor model’, Diploma in Electrical Engineering, TU-Dresden, Dresden, Germany, 2000.
    31. 31)
      • 2. Dohler, M., Li, Y.: ‘Cooperative communications: hardware, channel and PHY’ (John Wiley & Sons, Inc., 2010), ch. 5, pp. 321375.
    32. 32)
      • 24. Laneman, J., Tse, D., Wornell, G.: ‘Cooperative diversity in wireless networks: efficient protocols and outage behavior’, IEEE Trans. Inf. Theory, 2004, 50, (12), pp. 30623080.
    33. 33)
      • 7. Harrold, T.J., Nix, A.R.: ‘Intelligent relaying for future personal communication systems’. IEE Colloquium on Capacity and Range Enhancement Techniques for the Third Generation Mobile Communications and Beyond (Ref. No. 2000/003), London, UK, February 2000, pp. 19.
    34. 34)
      • 76. Akhbari, B., Mirmohseni, M., Aref, M.: ‘Compress-and-forward strategy for the relay channel with non-causal state information’. Proc. IEEE Int. Symp. on Information Theory, Seoul, South Korea, 28 June–3 July 2009, pp. 11691173.
    35. 35)
      • 10. Laneman, J.N., Wornell, G.W.: ‘Energy-efficient antenna sharing and relaying for wireless networks’. 2000 IEEE Wireless Communications and Networking Conf., Chicago, IL, USA, September 2000, vol. 1, pp. 712.
    36. 36)
      • 78. Jamali, V., Zlatanov, N., Shoukry, H., et al: ‘Achievable rate of the half-duplex multi-hop buffer-aided relay channel with block fading’, IEEE Trans. Wirel. Commun., 2015, 14, (11), pp. 62406256.
    37. 37)
      • 51. Jamali, V., Zlatanov, N., Schober, R.: ‘Bidirectional buffer-aided relay networks with fixed rate transmission—part I: delay-unconstrained case’, IEEE Trans. Wirel. Commun., 2015, 14, (3), pp. 13231338.
    38. 38)
      • 27. Tannious, R., Nosratinia, A.: ‘Spectrally-efficient relay selection with limited feedback’, IEEE J. Sel. Areas Commun., 2008, 26, (8), pp. 14191428.
    39. 39)
      • 48. Chen, W., Letaief, K.B., Cao, Z.: ‘Buffer-aware network coding for wireless networks’, IEEE/ACM Trans. Netw., 2012, 20, (5), pp. 13891401.
    40. 40)
      • 101. Yang, M., Fanyu, M., Shuo, S., et al: ‘Markov chain based two-state satellite mobile channel model’. IEEE 73rd Vehicular Technology Conf. (VTC Spring), Yokohama, Japan, May 2011.
    41. 41)
      • 52. Jamali, V., Zlatanov, N., Schober, R.: ‘Bidirectional buffer-aided relay networks with fixed rate transmission—part II: delay-constrained case’, IEEE Trans. Wirel. Commun., 2015, 14, (3), pp. 13391355.
    42. 42)
      • 79. Phan, K.T., Ngoc, T.L.: ‘Power allocation for buffer-aided full-duplex relaying with imperfect self-interference cancelation and statistical delay constraint’, IEEE Access, 2016, 4, pp. 39613974.
    43. 43)
      • 9. Sendonaris, A., Erkip, E., Aazhang, B.: ‘Increasing uplink capacity via user cooperation diversity’. Proc. 1998 IEEE Int. Symp. on Information Theory, Cambridge, MA, USA, August 1998, p. 156.
    44. 44)
      • 33. Shafie, A.E., Khattab, T., Sultan, A., et al: ‘On the design of a relay-assisted link network’, IEEE Commun. Lett., 2015, 19, (7), pp. 11531156.
    45. 45)
      • 54. Kumar, R., Hossain, A.: ‘Optimisation of throughput of two-way buffer-aided relaying networks with wireless assisted links’, IET Commun., 2017, 11, (10), pp. 16261632.
    46. 46)
      • 68. Yu, B., Yang, L., Cheng, X., et al: ‘Power and location optimization for full-duplex decode-and-forward relaying’, IEEE Trans. Commun., 2015, 63, (12), pp. 47434753.
    47. 47)
      • 102. Gross, D., Shortle, J.F., Thompson, J.M., et al: ‘Fundamentals of queueing theory’ (John Wiley & Sons, Inc., 2008, 4th edn.), ch. 2, pp. 49103.
    48. 48)
      • 25. Nabar, R.U., Bölcskei, H., Kneubühler, F.W.: ‘Fading relay channels: performance limits and space-time signal design’, IEEE J. Sel. Areas Commun., 2004, 22, (6), pp. 10991109.
    49. 49)
      • 95. Alexandropoulos, G.C., Duarte, M.: ‘Joint design of multi-tap analog cancellation and digital beamforming for reduced complexity full duplex MIMO systems’. IEEE Int. Conf. on Communications (ICC), Paris, France, May 2017.
    50. 50)
      • 14. Hunter, T.E., Nosratinia, A.: ‘Performance analysis of coded cooperation diversity’. IEEE Int. Conf. on Communications, 2003. ICC'03, Anchorage, AK, USA, May 2003, vol. 4, pp. 26882692.
    51. 51)
      • 4. Meulen, E.C.V.D.: ‘Three-terminal communication channels’, Adv. Appl. Probab., 1971, 3, (1), pp. 120154.
    52. 52)
      • 45. Cho, D.-S., Shim, Y., Park, H.: ‘Optimal time allocation for two-way relay channel using physical-layer network coding’, IET Commun., 2014, 8, (14), pp. 24692475.
    53. 53)
      • 66. Khafagy, M., Ismail, A., Alouini, M.-S., et al: ‘On the outage performance of full-duplex selective decode-and-forward relaying’, IEEE Commun. Lett., 2013, 17, (6), pp. 11801183.
    54. 54)
      • 53. Shi, S., Li, S., Tian, J.: ‘Markov modeling for two-way relay with finite buffer’, IEEE Commun. Lett., 2016, 20, (4), pp. 768771.
    55. 55)
      • 29. Xia, B., Fan, Y., Thompson, J., et al: ‘Buffering in a three-node relay network’, IEEE Trans. Wirel. Commun., 2008, 7, (11), pp. 44924496.
    56. 56)
      • 21. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (John Wiley & Sons, Inc., 2006, 2nd edn.), ch. 15, pp. 509611.
    57. 57)
      • 44. Shim, Y., Park, H.: ‘A closed-form expression of optimal time for two-way relay using DF MABC protocol’, IEEE Commun. Lett., 2014, 18, (5), pp. 721724.
    58. 58)
      • 23. He, D.X., Li, F.Y.: ‘Throughput and energy efficiency comparison of one-hop, two-hop, virtual relay and cooperative retransmission schemes’. Proc. European Wireless Conf., Lucca, Italy, April 2010.
    59. 59)
      • 8. Harrold, T.J., Nix, A.R.: ‘Capacity enhancement using intelligent relaying for future personal communication systems’. 52nd Vehicular Technology Conf., Fall 2000. IEEE VTS-Fall VTC 2000, Boston, MA, USA, September 2000, vol. 5, pp. 21152120.
    60. 60)
      • 63. Zhou, J., Reiskarimian, N., Diakonikolas, J., et al: ‘Integrated full duplex radios’, IEEE Commun. Mag., 2017, 55, (4), pp. 142151.
    61. 61)
      • 6. 3rd Generation Partnership Project.: Technical specification group radio access network; opportunity driven multiple access’, 3G TR 25.924V1.0.0, 1999.
    62. 62)
      • 90. Beaulieu, N.C., Hu, J.: ‘A noise reduction amplify-and-forward relay protocol for distributed spatial diversity’, IEEE Commun. Lett., 2006, 10, (11), pp. 787789.
    63. 63)
      • 38. Manoj, B.R., Mallik, R.K., Bhatnagar, M.R.: ‘Buffer-aided multi-hop DF cooperative networks: A state-clustering based approach’, IEEE Trans. Commun., 2016, 64, (12), pp. 49975010.
    64. 64)
      • 96. Yang, T., Zhang, R., Cheng, X., et al: ‘Graph coloring based resource sharing (GCRS) scheme for D2D communications underlaying full-duplex cellular networks’, IEEE Trans. Veh. Technol., 2017, 66, (8), pp. 75067517.
    65. 65)
      • 17. Telatar, I.: ‘Capacity of multiantenna Gaussian channels’, AT&T Bell Laboratories Internal Technical Memo, 1995.
    66. 66)
      • 28. Alves, H., Souza, R.D.: ‘Selective decode-and-forward using fixed relays and packet accumulation’, IEEE Commun. Lett., 2011, 15, (7), pp. 707709.
    67. 67)
      • 97. Ma, B., Mansouri, H.S., Wong, V.W.S.: ‘Full-duplex relaying for D2D communication in mm wave based 5G networks’, IEEE Trans. Wirel. Commun., 2018, 17, (7), pp. 44174431.
    68. 68)
      • 62. Bharadia, D., Katti, S.: ‘Full duplex MIMO radios’. Proc. 11th USENIX Symp. on Networked Systems Design Implementation, Seattle, WA, USA, 2014, pp. 359372.
    69. 69)
      • 71. Nam, C., Joo, C., Bahk, S.: ‘Joint subcarrier assignment and power allocation in full-duplex OFDMA networks’, IEEE Trans. Wirel. Commun., 2015, 14, (6), pp. 31083119.
    70. 70)
      • 36. Islam, T., Michalopoulos, D.S., Schober, R., et al: ‘Buffer-aided relaying with outdated CSI’, IEEE Trans. Wirel. Commun., 2016, 15, (3), pp. 19791997.
    71. 71)
      • 18. Foschini, G.: ‘Layered space–time architecture for wireless communications in a fading environment when using multi-element antennas’, Bell Labs Tech. J., 1996, 1, pp. 4159.
    72. 72)
      • 30. Zlatanov, N., Schober, R.: ‘Buffer-aided relaying with adaptive link selection—fixed and mixed rate transmission’, IEEE Trans. Inf. Theory, 2013, 59, (5), pp. 28162840.
    73. 73)
      • 32. Shafie, A.E, Khafagy, M.G., Sultan, A.: ‘Optimization of a relay-assisted link with buffer state information at the source’, IEEE Commun. Lett., 2014, 18, (12), pp. 21492152.
    74. 74)
      • 39. Wicke, W., Zlatanov, N., Jamali, V., et al: ‘Buffer-aided relaying with discrete transmission rates for the two-hop half-duplex relay network’, IEEE Trans. Wirel. Commun., 2017, 16, (2), pp. 967981.
    75. 75)
      • 49. Liu, H., Popovski, P., Carvalho, E.D.: ‘Sum-rate optimization in a two-way relay network with buffering’, IEEE Commun. Lett., 2013, 17, (1), pp. 9598.
    76. 76)
      • 37. Huang, S., Cai, J.: ‘An analysis framework for buffer-aided relaying under time-correlated fading channels’, IEEE Trans. Veh. Technol., 2016, 65, (9), pp. 69876999.
    77. 77)
      • 47. Ding, L., Tao, M., Yang, F., et al: ‘Joint scheduling and relay selection in one- and two-way relay networks with buffering’. Proc. 2009 IEEE Int. Conf. on Communications, Dresden, Germany, June 2009, pp. 15.
    78. 78)
      • 93. Alexandropoulos, G.C., Papadogiannis, A., Berberidis, K.: ‘Performance analysis of cooperative networks with relay selection over Nakagami-m fading channels’, IEEE Signal Process. Lett., 2010, 17, (5), pp. 441444.
    79. 79)
      • 35. Zhou, B., Cui, Y., Tao, M.: ‘Stochastic throughput optimization for two-hop systems with finite relay buffers’, IEEE Trans. Signal Process., 2015, 63, (20), pp. 55465560.
    80. 80)
      • 100. Little, J.D.C.: ‘A proof of the queueing formula: L = λω’, Oper. Res., 1961, 9, (3), pp. 383388.
    81. 81)
      • 94. Report ITU-R M.2320-0: ‘Future technology trends of terrestrial IMT systems’, November 2014. Available at https://www.itu.int/pub/R-REP-M.2320.
    82. 82)
      • 84. Nomikos, N., Charalambous, T., Vouyioukas, D., et al: ‘Power adaptation in buffer-aided full-duplex relay networks with statistical CSI’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 78467850doi: 10.1109/TVT.2018.2837683.
    83. 83)
      • 22. Liu, K.J.R., Sadek, A.K., Su, W., et al: ‘Cooperative communications and networking’ (Cambridge University Press, 2008).
    84. 84)
      • 60. Ahmed, E., Eltawil, A.M., Li, Z., et al: ‘Full-duplex systems using multireconfigurable antennas’, IEEE Trans. Wirel. Commun., 2015, 14, (11), pp. 59715983.
    85. 85)
      • 31. Zlatanov, N., Schober, R., Popovski, P.: ‘Buffer-aided relaying with adaptive link selection’, IEEE J. Sel. Areas Commun., 2013, 31, (8), pp. 15301542.
    86. 86)
      • 40. Wu, Y., Chou, P.A., Kung, S.Y.: ‘Information exchange in wireless network coding and physical-layer broadcast’. Proc. 39th Annual Conf. Sciences Systems, Redmond, WA, USA, March 2005, pp. 16.
    87. 87)
      • 80. Shaqfeh, M., Zafar, A., Alnuweiri, H., et al: ‘Maximizing expected achievable rates for block-fading buffer-aided relay channels’, IEEE Trans. Wirel. Commun., 2016, 15, (9), pp. 59195931.
    88. 88)
      • 77. Riihonen, T., Werner, S., Wichman, R.: ‘Hybrid full-duplex/half-duplex relaying with transmit power adaptation’, IEEE Trans. Wirel. Commun., 2011, 10, (9), pp. 30743085.
    89. 89)
      • 74. Qiao, D., Gursoy, M.C., Velipasalar, S.: ‘Effective capacity of two-hop wireless communication systems’, IEEE Trans. Inf. Theory, 2013, 59, (2), pp. 873885.
    90. 90)
      • 42. Rankov, B., Wittneben, A.: ‘Spectral efficient protocols for half-duplex fading relay channel’, IEEE J. Sel. Areas Commun., 2007, 25, (2), pp. 379389.
    91. 91)
      • 88. Grant, M., Boyd, S.: ‘CVX: MATLAB software for disciplined convex programming, version 2.1’, December 2017. Available at http://cvxr.com/cvx.
    92. 92)
      • 1. Nomikos, N., Charalambous, T., Krikidis, I., et al: ‘A survey on buffer-aided relay selection’, IEEE Commun. Surv. Tutorials, 2016, 18, (2), pp. 10731097.
    93. 93)
      • 92. Bletsas, A., Khisti, A., Reed, D.P., et al: ‘A simple cooperative diversity method based on network path selection’, IEEE J. Sel. Areas Commun., 2006, 24, (3), pp. 659672.
    94. 94)
      • 89. Shi, S., Ni, W., Liu, R.P.: ‘Performance analysis of XOR two-way relay with finite buffers and instant scheduling’, IET Commun., 2017, 11, (4), pp. 507513.
    95. 95)
      • 99. Ju, H., Oh, E., Hong, D.: ‘Catching resource-devouring worms in next-generation wireless relay systems: two-way relay and full-duplex relay’, IEEE Commun. Mag., 2009, 47, (9), pp. 5865.
    96. 96)
      • 34. Luo, S., The, K.C.: ‘Buffer state based relay selection for buffer-aided cooperative relaying systems’, IEEE Trans. Wirel. Commun., 2015, 14, (10), pp. 54305439.
    97. 97)
      • 72. Yu, G., Wen, D., Qu, F.: ‘Joint user scheduling and channel allocation for cellular networks with full duplex base stations’, IET Commun., 2016, 10, (5), pp. 479486.
    98. 98)
      • 82. Khafagy, M.G., Shafie, A.E., Sultan, A., et al: ‘Throughput maximization for buffer-aided hybrid half-/full-duplex relaying with self-interference’. IEEE Int. Conf. on Communications (ICC), London, UK, June 2015, pp. 19261931.
    99. 99)
      • 61. Bharadia, D., McMilin, E., Katti, S.: ‘Full duplex radios’, ACM SIGCOMM Comput. Commun. Rev., 2013, 43, (4), pp. 375386.
    100. 100)
      • 87. Wen, D., Yu, G., Li, R., et al: ‘Results on energy- and spectral-efficiency tradeoff in cellular networks with full-duplex enabled base stations’, IEEE Trans. Wirel. Commun., 2017, 16, (3), pp. 14941507.
    101. 101)
      • 43. Li, Q., Ting, S.H., Pandharipande, A., et al: ‘Adaptive two-way relaying and outage analysis’, IEEE Trans. Wirel. Commun., 2009, 8, (6), pp. 32883299.
    102. 102)
      • 46. Yang, Y., Bai, L., Chen, C., et al: ‘Fairness-aware power allocation in two-way decode-and-forward relay systems’, Electron. Lett., 2015, 51, (1), pp. 5254.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5823
Loading

Related content

content/journals/10.1049/iet-com.2018.5823
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address