http://iet.metastore.ingenta.com
1887

Survey on half- and full-duplex relay based cooperative communications and its potential challenges and open issues using Markov chains

Survey on half- and full-duplex relay based cooperative communications and its potential challenges and open issues using Markov chains

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors address a brief survey on the half-duplex (HD) and full duplex (FD) relay based cooperative communications. Some nodes in wireless communication acting as relays can share their resource with other nodes by exploiting relaying technologies to achieve cooperative communications. Generally, the buffer-less HD relaying (HDR) limits the performance of a wireless system when the worst condition of transmitting and receiving channels of the relay occurs. The HDR is affected by pre-log factor one-half that reduces the spectral-efficiency of the wireless system. Significantly, advanced technologies in self-interference cancellation enable the FD relaying (FDR) in the cooperative wireless system to achieve high spectral efficiency. Recently, the buffer-aided FDR provides significant performance gains by exploring the concepts of Markov chain of queuing theory at relay as compared to either buffer-aided or buffer-less HDR. Finally, they outline several research challenges associated with small size, interference management, and fading channel for FDR. In addition, some research challenges remain for further investigation that is related to physical-layer security, FDR with a cross-layer approach and two-way buffer-aided FDR.

References

    1. 1)
      • 1. Nomikos, N., Charalambous, T., Krikidis, I., et al: ‘A survey on buffer-aided relay selection’, IEEE Commun. Surv. Tutorials, 2016, 18, (2), pp. 10731097.
    2. 2)
      • 2. Dohler, M., Li, Y.: ‘Cooperative communications: hardware, channel and PHY’ (John Wiley & Sons, Inc., 2010), ch. 5, pp. 321375.
    3. 3)
      • 3. Meulen, E.C.V.D.: ‘Transmission of information in a t-terminal discrete memoryless channel’. Technical Report, Department of Statistics, University of California, Berkeley, CA, 1968.
    4. 4)
      • 4. Meulen, E.C.V.D.: ‘Three-terminal communication channels’, Adv. Appl. Probab., 1971, 3, (1), pp. 120154.
    5. 5)
      • 5. Cover, T., Gamal, A.E.: ‘Capacity theorems for the relay channels’, IEEE Trans. Inf. Theory, 1979, 25, (5), pp. 572584.
    6. 6)
      • 6. 3rd Generation Partnership Project.: Technical specification group radio access network; opportunity driven multiple access’, 3G TR 25.924V1.0.0, 1999.
    7. 7)
      • 7. Harrold, T.J., Nix, A.R.: ‘Intelligent relaying for future personal communication systems’. IEE Colloquium on Capacity and Range Enhancement Techniques for the Third Generation Mobile Communications and Beyond (Ref. No. 2000/003), London, UK, February 2000, pp. 19.
    8. 8)
      • 8. Harrold, T.J., Nix, A.R.: ‘Capacity enhancement using intelligent relaying for future personal communication systems’. 52nd Vehicular Technology Conf., Fall 2000. IEEE VTS-Fall VTC 2000, Boston, MA, USA, September 2000, vol. 5, pp. 21152120.
    9. 9)
      • 9. Sendonaris, A., Erkip, E., Aazhang, B.: ‘Increasing uplink capacity via user cooperation diversity’. Proc. 1998 IEEE Int. Symp. on Information Theory, Cambridge, MA, USA, August 1998, p. 156.
    10. 10)
      • 10. Laneman, J.N., Wornell, G.W.: ‘Energy-efficient antenna sharing and relaying for wireless networks’. 2000 IEEE Wireless Communications and Networking Conf., Chicago, IL, USA, September 2000, vol. 1, pp. 712.
    11. 11)
      • 11. Laneman, J.N., Wornell, G.W., Tse, D.N.C.: ‘An efficient protocol for realizing cooperative diversity in wireless networks’. Proc. 2001 IEEE Int. Symp. on Information Theory, Washington, DC, USA, June 2001, p. 294.
    12. 12)
      • 12. Hunter, T.E., Nosratinia, A.: ‘Coded cooperation under slow fading, fast fading, and power control’. Conf. Record of the Thirty-Sixth Asilomar Conf. on Signals, Systems and Computers 2002, Pacific Grove, CA, USA, November 2002, vol. 1, pp. 118122.
    13. 13)
      • 13. Hunter, T.E., Nosratinia, A.: ‘Cooperation diversity through coding’. Proc. IEEE Int. Symp. on Information Theory, Lausanne, Switzerland, July 2002, p. 220.
    14. 14)
      • 14. Hunter, T.E., Nosratinia, A.: ‘Performance analysis of coded cooperation diversity’. IEEE Int. Conf. on Communications, 2003. ICC'03, Anchorage, AK, USA, May 2003, vol. 4, pp. 26882692.
    15. 15)
      • 15. Stefanov, A., Erkip, E.: ‘Cooperative coding for wireless networks’. 4th Int. Workshop on Mobile and Wireless Communications Network, Stockholm, Sweden, September 2002, pp. 273277.
    16. 16)
      • 16. Dohler, M.: ‘A novel statistical indoor model’, Diploma in Electrical Engineering, TU-Dresden, Dresden, Germany, 2000.
    17. 17)
      • 17. Telatar, I.: ‘Capacity of multiantenna Gaussian channels’, AT&T Bell Laboratories Internal Technical Memo, 1995.
    18. 18)
      • 18. Foschini, G.: ‘Layered space–time architecture for wireless communications in a fading environment when using multi-element antennas’, Bell Labs Tech. J., 1996, 1, pp. 4159.
    19. 19)
      • 19. Alamouti, S.M.: ‘A simple transmit diversity technique for wireless communications’, IEEE J. Sel. Areas Commun., 1998, 16, (8), pp. 14511458.
    20. 20)
      • 20. Tarokh, V., Seshadri, N., Calderbank, A.R.: ‘Space–time codes for high data rate wireless communication: performance criterion and code construction’, IEEE Trans. Inf. Theory, 1998, 44, (2), pp. 744765.
    21. 21)
      • 21. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (John Wiley & Sons, Inc., 2006, 2nd edn.), ch. 15, pp. 509611.
    22. 22)
      • 22. Liu, K.J.R., Sadek, A.K., Su, W., et al: ‘Cooperative communications and networking’ (Cambridge University Press, 2008).
    23. 23)
      • 23. He, D.X., Li, F.Y.: ‘Throughput and energy efficiency comparison of one-hop, two-hop, virtual relay and cooperative retransmission schemes’. Proc. European Wireless Conf., Lucca, Italy, April 2010.
    24. 24)
      • 24. Laneman, J., Tse, D., Wornell, G.: ‘Cooperative diversity in wireless networks: efficient protocols and outage behavior’, IEEE Trans. Inf. Theory, 2004, 50, (12), pp. 30623080.
    25. 25)
      • 25. Nabar, R.U., Bölcskei, H., Kneubühler, F.W.: ‘Fading relay channels: performance limits and space-time signal design’, IEEE J. Sel. Areas Commun., 2004, 22, (6), pp. 10991109.
    26. 26)
      • 26. Fan, Y., Wang, C., Thompson, J., et al: ‘Recovering multiplexing loss through successive relaying using repetition coding’, IEEE Trans. Wirel. Commun., 2007, 6, (12), pp. 44844493.
    27. 27)
      • 27. Tannious, R., Nosratinia, A.: ‘Spectrally-efficient relay selection with limited feedback’, IEEE J. Sel. Areas Commun., 2008, 26, (8), pp. 14191428.
    28. 28)
      • 28. Alves, H., Souza, R.D.: ‘Selective decode-and-forward using fixed relays and packet accumulation’, IEEE Commun. Lett., 2011, 15, (7), pp. 707709.
    29. 29)
      • 29. Xia, B., Fan, Y., Thompson, J., et al: ‘Buffering in a three-node relay network’, IEEE Trans. Wirel. Commun., 2008, 7, (11), pp. 44924496.
    30. 30)
      • 30. Zlatanov, N., Schober, R.: ‘Buffer-aided relaying with adaptive link selection—fixed and mixed rate transmission’, IEEE Trans. Inf. Theory, 2013, 59, (5), pp. 28162840.
    31. 31)
      • 31. Zlatanov, N., Schober, R., Popovski, P.: ‘Buffer-aided relaying with adaptive link selection’, IEEE J. Sel. Areas Commun., 2013, 31, (8), pp. 15301542.
    32. 32)
      • 32. Shafie, A.E, Khafagy, M.G., Sultan, A.: ‘Optimization of a relay-assisted link with buffer state information at the source’, IEEE Commun. Lett., 2014, 18, (12), pp. 21492152.
    33. 33)
      • 33. Shafie, A.E., Khattab, T., Sultan, A., et al: ‘On the design of a relay-assisted link network’, IEEE Commun. Lett., 2015, 19, (7), pp. 11531156.
    34. 34)
      • 34. Luo, S., The, K.C.: ‘Buffer state based relay selection for buffer-aided cooperative relaying systems’, IEEE Trans. Wirel. Commun., 2015, 14, (10), pp. 54305439.
    35. 35)
      • 35. Zhou, B., Cui, Y., Tao, M.: ‘Stochastic throughput optimization for two-hop systems with finite relay buffers’, IEEE Trans. Signal Process., 2015, 63, (20), pp. 55465560.
    36. 36)
      • 36. Islam, T., Michalopoulos, D.S., Schober, R., et al: ‘Buffer-aided relaying with outdated CSI’, IEEE Trans. Wirel. Commun., 2016, 15, (3), pp. 19791997.
    37. 37)
      • 37. Huang, S., Cai, J.: ‘An analysis framework for buffer-aided relaying under time-correlated fading channels’, IEEE Trans. Veh. Technol., 2016, 65, (9), pp. 69876999.
    38. 38)
      • 38. Manoj, B.R., Mallik, R.K., Bhatnagar, M.R.: ‘Buffer-aided multi-hop DF cooperative networks: A state-clustering based approach’, IEEE Trans. Commun., 2016, 64, (12), pp. 49975010.
    39. 39)
      • 39. Wicke, W., Zlatanov, N., Jamali, V., et al: ‘Buffer-aided relaying with discrete transmission rates for the two-hop half-duplex relay network’, IEEE Trans. Wirel. Commun., 2017, 16, (2), pp. 967981.
    40. 40)
      • 40. Wu, Y., Chou, P.A., Kung, S.Y.: ‘Information exchange in wireless network coding and physical-layer broadcast’. Proc. 39th Annual Conf. Sciences Systems, Redmond, WA, USA, March 2005, pp. 16.
    41. 41)
      • 41. Popovski, P., Yomo, H.: ‘Wireless network coding by amplify-and-forward for bi-directional traffic flows’, IEEE Commun. Lett., 2007, 11, (1), pp. 1618.
    42. 42)
      • 42. Rankov, B., Wittneben, A.: ‘Spectral efficient protocols for half-duplex fading relay channel’, IEEE J. Sel. Areas Commun., 2007, 25, (2), pp. 379389.
    43. 43)
      • 43. Li, Q., Ting, S.H., Pandharipande, A., et al: ‘Adaptive two-way relaying and outage analysis’, IEEE Trans. Wirel. Commun., 2009, 8, (6), pp. 32883299.
    44. 44)
      • 44. Shim, Y., Park, H.: ‘A closed-form expression of optimal time for two-way relay using DF MABC protocol’, IEEE Commun. Lett., 2014, 18, (5), pp. 721724.
    45. 45)
      • 45. Cho, D.-S., Shim, Y., Park, H.: ‘Optimal time allocation for two-way relay channel using physical-layer network coding’, IET Commun., 2014, 8, (14), pp. 24692475.
    46. 46)
      • 46. Yang, Y., Bai, L., Chen, C., et al: ‘Fairness-aware power allocation in two-way decode-and-forward relay systems’, Electron. Lett., 2015, 51, (1), pp. 5254.
    47. 47)
      • 47. Ding, L., Tao, M., Yang, F., et al: ‘Joint scheduling and relay selection in one- and two-way relay networks with buffering’. Proc. 2009 IEEE Int. Conf. on Communications, Dresden, Germany, June 2009, pp. 15.
    48. 48)
      • 48. Chen, W., Letaief, K.B., Cao, Z.: ‘Buffer-aware network coding for wireless networks’, IEEE/ACM Trans. Netw., 2012, 20, (5), pp. 13891401.
    49. 49)
      • 49. Liu, H., Popovski, P., Carvalho, E.D.: ‘Sum-rate optimization in a two-way relay network with buffering’, IEEE Commun. Lett., 2013, 17, (1), pp. 9598.
    50. 50)
      • 50. Jamali, V., Zlatanov, N., Ikhlef, A., et al: ‘Achievable rate region of the bidirectional buffer-aided relay channel with block fading’, IEEE Trans. Inf. Theory, 2014, 60, (11), pp. 70907111.
    51. 51)
      • 51. Jamali, V., Zlatanov, N., Schober, R.: ‘Bidirectional buffer-aided relay networks with fixed rate transmission—part I: delay-unconstrained case’, IEEE Trans. Wirel. Commun., 2015, 14, (3), pp. 13231338.
    52. 52)
      • 52. Jamali, V., Zlatanov, N., Schober, R.: ‘Bidirectional buffer-aided relay networks with fixed rate transmission—part II: delay-constrained case’, IEEE Trans. Wirel. Commun., 2015, 14, (3), pp. 13391355.
    53. 53)
      • 53. Shi, S., Li, S., Tian, J.: ‘Markov modeling for two-way relay with finite buffer’, IEEE Commun. Lett., 2016, 20, (4), pp. 768771.
    54. 54)
      • 54. Kumar, R., Hossain, A.: ‘Optimisation of throughput of two-way buffer-aided relaying networks with wireless assisted links’, IET Commun., 2017, 11, (10), pp. 16261632.
    55. 55)
      • 55. Liu, G., Yu, F.R., Ji, H., et al: ‘In-band full-duplex relaying: A survey, research issues and challenges’, IEEE Commun. Surv. Tutorials, 2015, 17, (2), pp. 500524.
    56. 56)
      • 56. Choi, J.I., Jain, M., Srinivasan, K., et al: ‘Achieving single channel, full duplex wireless communication’. Proc. ACM MobiCom'10, Chicago, IL, September 2010, pp. 112.
    57. 57)
      • 57. Duarte, M., Sabharwal, A.: ‘Full-duplex wireless communications using off-the-shelf radios: feasibility and first results’. 2010 Conf. Record of the Forty Fourth Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, November 2010, pp. 15581562.
    58. 58)
      • 58. Ahmed, E., Eltawil, A.M., Sabharwal, A.: ‘Rate gain region and design tradeoffs for full-duplex wireless communications’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 35563565.
    59. 59)
      • 59. Everett, E., Sahai, A., Sabharwal, A.: ‘Passive self-interference suppression for full duplex infrastructure nodes’, IEEE Trans. Wirel. Commun., 2014, 13, (2), pp. 680694.
    60. 60)
      • 60. Ahmed, E., Eltawil, A.M., Li, Z., et al: ‘Full-duplex systems using multireconfigurable antennas’, IEEE Trans. Wirel. Commun., 2015, 14, (11), pp. 59715983.
    61. 61)
      • 61. Bharadia, D., McMilin, E., Katti, S.: ‘Full duplex radios’, ACM SIGCOMM Comput. Commun. Rev., 2013, 43, (4), pp. 375386.
    62. 62)
      • 62. Bharadia, D., Katti, S.: ‘Full duplex MIMO radios’. Proc. 11th USENIX Symp. on Networked Systems Design Implementation, Seattle, WA, USA, 2014, pp. 359372.
    63. 63)
      • 63. Zhou, J., Reiskarimian, N., Diakonikolas, J., et al: ‘Integrated full duplex radios’, IEEE Commun. Mag., 2017, 55, (4), pp. 142151.
    64. 64)
      • 64. Amjad, M.S., Nawaz, H., Ozsoy, K., et al: ‘A Low-complexity full-duplex radio implementation with a single antenna’, IEEE Trans. Veh. Technol., 2018, 67, (3), pp. 22062218.
    65. 65)
      • 65. Kim, T.M., Paulraj, A.: ‘Outage probability of amplify-and-forward cooperation with full duplex relay’. IEEE Wireless Communications and Networking Conf. (WCNC), Shanghai, China, April 2012, pp. 7579.
    66. 66)
      • 66. Khafagy, M., Ismail, A., Alouini, M.-S., et al: ‘On the outage performance of full-duplex selective decode-and-forward relaying’, IEEE Commun. Lett., 2013, 17, (6), pp. 11801183.
    67. 67)
      • 67. Wang, Q., Dong, Y., Xu, X., et al: ‘Outage probability of full-duplex AF relaying with processing delay and residual self-interference’, IEEE Commun. Lett., 2015, 17, (5), pp. 783786.
    68. 68)
      • 68. Yu, B., Yang, L., Cheng, X., et al: ‘Power and location optimization for full-duplex decode-and-forward relaying’, IEEE Trans. Commun., 2015, 63, (12), pp. 47434753.
    69. 69)
      • 69. Goyal, S., Liu, P., Hua, S., et al: ‘Analyzing a full-duplex cellular system’. 47th Annual Conf. on Information Sciences and Systems (CISS), Baltimore, MD, USA, March 2013.
    70. 70)
      • 70. Shao, S., Liu, D., Deng, K., et al: ‘Analysis of carrier utilization in full-duplex cellular networks by dividing the co-channel interference region’, IEEE Commun. Lett., 2014, 18, (6), pp. 10431046.
    71. 71)
      • 71. Nam, C., Joo, C., Bahk, S.: ‘Joint subcarrier assignment and power allocation in full-duplex OFDMA networks’, IEEE Trans. Wirel. Commun., 2015, 14, (6), pp. 31083119.
    72. 72)
      • 72. Yu, G., Wen, D., Qu, F.: ‘Joint user scheduling and channel allocation for cellular networks with full duplex base stations’, IET Commun., 2016, 10, (5), pp. 479486.
    73. 73)
      • 73. Qiao, D.: ‘Effective capacity of buffer-aided full-duplex relay systems with selection relaying’, IEEE Trans. Commun., 2016, 64, (1), pp. 117129.
    74. 74)
      • 74. Qiao, D., Gursoy, M.C., Velipasalar, S.: ‘Effective capacity of two-hop wireless communication systems’, IEEE Trans. Inf. Theory, 2013, 59, (2), pp. 873885.
    75. 75)
      • 75. Qiao, D., Gursoy, M.C.: ‘Statistical delay tradeoffs in buffer-aided two-hop wireless communication systems’, IEEE Trans. Commun., 2016, 64, (11), pp. 45634577.
    76. 76)
      • 76. Akhbari, B., Mirmohseni, M., Aref, M.: ‘Compress-and-forward strategy for the relay channel with non-causal state information’. Proc. IEEE Int. Symp. on Information Theory, Seoul, South Korea, 28 June–3 July 2009, pp. 11691173.
    77. 77)
      • 77. Riihonen, T., Werner, S., Wichman, R.: ‘Hybrid full-duplex/half-duplex relaying with transmit power adaptation’, IEEE Trans. Wirel. Commun., 2011, 10, (9), pp. 30743085.
    78. 78)
      • 78. Jamali, V., Zlatanov, N., Shoukry, H., et al: ‘Achievable rate of the half-duplex multi-hop buffer-aided relay channel with block fading’, IEEE Trans. Wirel. Commun., 2015, 14, (11), pp. 62406256.
    79. 79)
      • 79. Phan, K.T., Ngoc, T.L.: ‘Power allocation for buffer-aided full-duplex relaying with imperfect self-interference cancelation and statistical delay constraint’, IEEE Access, 2016, 4, pp. 39613974.
    80. 80)
      • 80. Shaqfeh, M., Zafar, A., Alnuweiri, H., et al: ‘Maximizing expected achievable rates for block-fading buffer-aided relay channels’, IEEE Trans. Wirel. Commun., 2016, 15, (9), pp. 59195931.
    81. 81)
      • 81. Zlatanov, N., Hranilovic, D., Evans, J.S.: ‘Buffer-aided relaying improves throughput of full-duplex relay networks with fixed-rate transmissions’, IEEE Commun. Lett., 2016, 20, (12), pp. 24462447.
    82. 82)
      • 82. Khafagy, M.G., Shafie, A.E., Sultan, A., et al: ‘Throughput maximization for buffer-aided hybrid half-/full-duplex relaying with self-interference’. IEEE Int. Conf. on Communications (ICC), London, UK, June 2015, pp. 19261931.
    83. 83)
      • 83. Shafie, A.E., Sultan, A., Dhahir, N.A.: ‘Physical-layer security of a buffer-aided full duplex relaying system’, IEEE Commun. Lett., 2016, 20, (9), pp. 18561859.
    84. 84)
      • 84. Nomikos, N., Charalambous, T., Vouyioukas, D., et al: ‘Power adaptation in buffer-aided full-duplex relay networks with statistical CSI’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 78467850doi: 10.1109/TVT.2018.2837683.
    85. 85)
      • 85. Li, L., Dong, C., Wang, L., et al: ‘Spectral-efficiency bidirectional decode-and-forward relaying for full-duplex communication’, IEEE Trans. Veh. Technol., 2016, 65, (9), pp. 70107020.
    86. 86)
      • 86. Li, C., Chen, Z., Wang, Y., et al: ‘Outage analysis of the full-duplex decode-and-forward two-way relay system’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 40734086.
    87. 87)
      • 87. Wen, D., Yu, G., Li, R., et al: ‘Results on energy- and spectral-efficiency tradeoff in cellular networks with full-duplex enabled base stations’, IEEE Trans. Wirel. Commun., 2017, 16, (3), pp. 14941507.
    88. 88)
      • 88. Grant, M., Boyd, S.: ‘CVX: MATLAB software for disciplined convex programming, version 2.1’, December 2017. Available at http://cvxr.com/cvx.
    89. 89)
      • 89. Shi, S., Ni, W., Liu, R.P.: ‘Performance analysis of XOR two-way relay with finite buffers and instant scheduling’, IET Commun., 2017, 11, (4), pp. 507513.
    90. 90)
      • 90. Beaulieu, N.C., Hu, J.: ‘A noise reduction amplify-and-forward relay protocol for distributed spatial diversity’, IEEE Commun. Lett., 2006, 10, (11), pp. 787789.
    91. 91)
      • 91. Li, Y., Vucetic, B.: ‘On the performance of a simple adaptive relaying protocol for wireless relay networks’. Proc. IEEE Semiannual Vehicular Technology Conf., Singapore, May 2008, pp. 24002405.
    92. 92)
      • 92. Bletsas, A., Khisti, A., Reed, D.P., et al: ‘A simple cooperative diversity method based on network path selection’, IEEE J. Sel. Areas Commun., 2006, 24, (3), pp. 659672.
    93. 93)
      • 93. Alexandropoulos, G.C., Papadogiannis, A., Berberidis, K.: ‘Performance analysis of cooperative networks with relay selection over Nakagami-m fading channels’, IEEE Signal Process. Lett., 2010, 17, (5), pp. 441444.
    94. 94)
      • 94. Report ITU-R M.2320-0: ‘Future technology trends of terrestrial IMT systems’, November 2014. Available at https://www.itu.int/pub/R-REP-M.2320.
    95. 95)
      • 95. Alexandropoulos, G.C., Duarte, M.: ‘Joint design of multi-tap analog cancellation and digital beamforming for reduced complexity full duplex MIMO systems’. IEEE Int. Conf. on Communications (ICC), Paris, France, May 2017.
    96. 96)
      • 96. Yang, T., Zhang, R., Cheng, X., et al: ‘Graph coloring based resource sharing (GCRS) scheme for D2D communications underlaying full-duplex cellular networks’, IEEE Trans. Veh. Technol., 2017, 66, (8), pp. 75067517.
    97. 97)
      • 97. Ma, B., Mansouri, H.S., Wong, V.W.S.: ‘Full-duplex relaying for D2D communication in mm wave based 5G networks’, IEEE Trans. Wirel. Commun., 2018, 17, (7), pp. 44174431.
    98. 98)
      • 98. Dang, S., Chen, G., Coon, J.P.: ‘Multicarrier relay selection for full-duplex relay-assisted OFDM D2D systems’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 72047218.
    99. 99)
      • 99. Ju, H., Oh, E., Hong, D.: ‘Catching resource-devouring worms in next-generation wireless relay systems: two-way relay and full-duplex relay’, IEEE Commun. Mag., 2009, 47, (9), pp. 5865.
    100. 100)
      • 100. Little, J.D.C.: ‘A proof of the queueing formula: L = λω’, Oper. Res., 1961, 9, (3), pp. 383388.
    101. 101)
      • 101. Yang, M., Fanyu, M., Shuo, S., et al: ‘Markov chain based two-state satellite mobile channel model’. IEEE 73rd Vehicular Technology Conf. (VTC Spring), Yokohama, Japan, May 2011.
    102. 102)
      • 102. Gross, D., Shortle, J.F., Thompson, J.M., et al: ‘Fundamentals of queueing theory’ (John Wiley & Sons, Inc., 2008, 4th edn.), ch. 2, pp. 49103.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5823
Loading

Related content

content/journals/10.1049/iet-com.2018.5823
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address