http://iet.metastore.ingenta.com
1887

Deep reinforcement learning-based beam Hopping algorithm in multibeam satellite systems

Deep reinforcement learning-based beam Hopping algorithm in multibeam satellite systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Beam hopping (BH) is the key technology to improve the system throughput and decrease the transmission delay in multibeam satellite systems. The objective of this study is to find a policy to maximise the expected long-term resource utilisation. The BH illumination plan (BHIP) optimisation problem aimed at minimising the transmission delay is formulated and modelled as a partially observable Markov decision process. To tackle the issue of unknown dynamics and prohibitive computation, an artificial intelligence method named deep reinforcement learning (DRL) is first proposed to solve the BHIP problem in multibeam satellite systems. The proposed DRL-BHIP algorithm considers a series of realistic conditions, including the traffic demands in spatial distribution and temporal variation, ModCod constraints, antenna radiation pattern and inter-beam interference. The state reformulation concept is adopted to characterise the traffic spatial and temporal features. Simulation results show that the proposed DRL-BHIP algorithm can decrease the transmission delay and improve the system throughput compared with existing algorithms.

References

    1. 1)
      • 1. Cocco, G., De Cola, T., Angelone, M., et al: ‘Radio resource management optimisation of flexible satellite payloads for DVB-S2 systems’, IEEE Trans. Broadcast., 2018, 64, (2), pp. 266280.
    2. 2)
      • 2. Kaneko, K., Nishiyama, H., Kato, N., et al: ‘An evaluation of flexible frequency utilisation in high throughput satellite communication systems with digital channelizer’. The 2017 IEEE Int. Conf. on Communications (ICC), Paris, France, May 2017.
    3. 3)
      • 3. Fenech, H., Tomatis, A., Amos, S., et al: ‘Eutelsat HTS systems’, Int. J. Satell. Commun. Netw., 2016, 34, (4), pp. 503521.
    4. 4)
      • 4. Choi, J.P., Chan, V.W.: ‘Optimum power and beam allocation based on traffic demands and channel conditions over satellite downlinks’, IEEE Trans. Wirel. Commun., 2005, 4, (6), pp. 29832993.
    5. 5)
      • 5. Choi, J.P., Chan, V.W.: ‘Resource management for advanced transmission antenna satellites’, IEEE Trans. Wirel. Commun., 2009, 8, (3), pp. 13081321.
    6. 6)
      • 6. Aravanis, A.I., Bhavani Shankar, M.R., Arapoglou, P.D., et al: ‘Power allocation in multibeam satellite systems: A two-stage multi-objective optimization’, IEEE Trans. Wirel. Commun., 2015, 14, (6), pp. 31713182.
    7. 7)
      • 7. Durand, F.R., Abrão, T.: ‘Power allocation in multibeam satellites based on particle swarm optimization’, AEU-Int. J. Electron. Commun., 2017, 78, pp. 124133.
    8. 8)
      • 8. Chiti, F., Fantacci, R., Tarchi, D., et al: ‘QoS provisioning in GEO satellite with onboard processing using predictor algorithms’, IEEE Wirel. Commun., 2005, 12, (5), pp. 2127.
    9. 9)
      • 9. Lei, J., Vazquez-Castro, M.A.: ‘Joint power and carrier allocation for the multibeam satellite downlink with individual SINR constraints’. The 2010 IEEE Int. Conf. on Communications, Cape Town, South Africa, May 2010.
    10. 10)
      • 10. Du, J., Jiang, C., Wang, J., et al: ‘Resource allocation in space multiaccess systems’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (2), pp. 598618.
    11. 11)
      • 11. Bai, L., Zhu, L., Choi, J., et al: ‘Cooperative transmission over Rician fading channels for geostationary orbiting satellite collocation system’, IET Commun., 2017, 11, (4), pp. 538547.
    12. 12)
      • 12. Angeletti, P., Fernandez Prim, D., Rinaldo, R.: ‘Beam hopping in multi-beam broadband satellite systems: system performance and payload architecture analysis’. The 24th AIAA Int. Communications Satellite Systems Conf., San Diego, June 2006.
    13. 13)
      • 13. Anzalchi, J., Couchman, A., Gabellini, P., et al: ‘Beam hopping in multi-beam broadband satellite systems: system simulation and performance comparison with non-hopped systems’. The 2010 5th Advanced Satellite Multimedia Systems Conf. and the 11th Signal Processing for Space Communications Workshop, Cagliari, Italy, September 2010, pp. 248255.
    14. 14)
      • 14. Evans, B., Thompson, P.: ‘Key issues and technologies for a Terabit/s satellite’. The 28th AIAA Int. Communications Satellite Systems Conf. (ICSSC 2010), Anaheim, California, USA, June 2010, p. 8713.
    15. 15)
      • 15. Alegre, R., Alagha, N., Vázquez-Castro, M.A.: ‘Heuristic algorithms for flexible resource allocation in beam hopping multi-beam satellite systems’. The 29th AIAA Int. Communications Satellite Systems Conf. (ICSSC 2011), Nara, Japan, July 2011, p. 8001.
    16. 16)
      • 16. Alegre, R., Alagha, N., Vázquez, M.A.: ‘Offered capacity optimization mechanisms for multi-beam satellite systems’. The 2012 IEEE Int. Conf. on Communications (ICC), Ottawa, ON, Canada, June 2012, pp. 31803184.
    17. 17)
      • 17. Liu, H., Yang, Z., Cao, Z.: ‘Max-min rate control on traffic in broadband multibeam satellite communications systems’, IEEE Commun. Lett., 2013, 17, (7), pp. 13961399.
    18. 18)
      • 18. Han, H., Zheng, X., Huang, Q., et al: ‘QoS-equilibrium slot allocation for beam hopping in broadband satellite communication systems’, Wirel. Netw., 2015, 21, (8), pp. 26172630.
    19. 19)
      • 19. Shi, S., Li, G., Li, Z., et al: ‘Joint power and bandwidth allocation for beam-hopping user downlinks in smart gateway multibeam satellite systems’, Int. J. Distrib. Sensor Netw., 2017, 13, (5), doi: 1550147717709461.
    20. 20)
      • 20. Ginesi, A., Re, E., Arapoglou, P.D.: ‘Joint beam hopping and precoding in HTS systems’. Int. Conf. on Wireless and Satellite Systems, OXFORD, GREAT BRITAIN, U.K, 2017, pp. 4351.
    21. 21)
      • 21. Mnih, V., Kavukcuoglu, K., Silver, D., et al: ‘Playing Atari with deep reinforcement learning’, arXiv preprint arXiv:1312.5602, 2013.
    22. 22)
      • 22. Mnih, V., Kavukcuoglu, K., Silver, D., et al: ‘Human-level control through deep reinforcement learning’, Nature, 2015, 518, (7540), p. 529.
    23. 23)
      • 23. Silver, D., Schrittwieser, J., Simonyan, K., et al: ‘Mastering the game of Go without human knowledge’, Nature, 2017, 550, (7676), p. 354.
    24. 24)
      • 24. Li, L., Lv, Y., Wang, F.Y.: ‘Traffic signal timing via deep reinforcement learning’, IEEE/CAA J. Autom. Sin., 2016, 3, (3), pp. 247254.
    25. 25)
      • 25. Mao, H., Alizadeh, M., Menache, I., et al: ‘Resource management with deep reinforcement learning’. The Proc. 15th ACM Workshop on Hot Topics in Networks, Trento, Italy, 2016, pp. 5056.
    26. 26)
      • 26. Liu, S., Hu, X., Wang, W.: ‘Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems’, IEEE Access, 2018, 6, pp. 1573315742.
    27. 27)
      • 27. Hu, X., Liu, S., Chen, R., et al: ‘A deep reinforcement learning based framework for dynamic resource allocation in multibeam satellite systems’, IEEE Commun. Lett., 2018, 22, (8), pp. 16121615.
    28. 28)
      • 28. ‘digital video broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive services, News gathering and other broadband satellite applications’, 2005.
    29. 29)
      • 29. Sutton, R.S., Barto, A.G.: ‘Reinforcement learning: an introduction’ (MIT Press, Cambridge, Massachusetts, USA, 1988).
    30. 30)
      • 30. Abadi, M., Barham, P., Chen, J., et al: ‘Tensorflow: a system for large-scale machine learning’, In Symp. Opearting Systems Design and Implementation, 2016, 16, pp. 265283.
    31. 31)
      • 31. ITU-R: ‘Recommendation ITU-R S.672-4: Satellite antenna radiation pattern for use as a design objective in the fixed-satellite service employing geostationary satellites’, 1997.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5774
Loading

Related content

content/journals/10.1049/iet-com.2018.5774
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address