© The Institution of Engineering and Technology
In this study, two iterative design algorithms for multipleinput multipleoutput (MIMO) radars with colocated antennas with point targets are proposed. In these algorithms, by joint design of the receiver filter and transmit waveform using linear combination of orthogonal waveforms, the authors aim to maximise the signaltointerference plusnoise ratio (SINR) in the presence of signal dependent interference. In the first proposed algorithm, in each iteration, transmit waveforms and receive filter are designed in closed form to decrease the computational complexity. In the second method, by adding constant envelope criteria, the final waveform would be a linear combination of orthogonal waveforms and because of using a constant envelope, combining coefficients have equal magnitudes and different phases. Therefore, it is more practical for hardware implementation in comparison to the first proposed method. Simulation results show that both proposed methods have better SINR performances compared with other methods proposed in MIMO radar literature. The outperformance of the second proposed method with respect to phased arrays shows that by only using phase shifted combination of orthogonal waveforms, better performance in comparison to phased array radars can be achieved.
References


1)

1. Li, J., Stoica, P.: ‘MIMO radar signal processing’ (John Wiley, Hoboken, New Jersey, USA, 2009).

2)

2. Haimovich, A., Blum, R., Cimini, L.: ‘Mimo radar with widely separated antennas’, IEEE Trans. Signal Process., 2008, 25, (1), pp. 116–129.

3)

3. Xu, L., Li, J., Stoica, P.: ‘Target detection and parameter estimation for MIMO radar systems’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, (3), pp. 927–939.

4)

4. Bekkerman, I., Tabrikian, J.: ‘Target detection and localization using MIMO radars and sonars’, IEEE Trans. Signal Process., 2006, 54, (10), pp. 3873–3883.

5)

5. Imani, S., Ghorashi, S.A..: ‘SINR maximization in colocated MIMO radars using transmit covariance matrix’, Signal Process., 2016, 119, (1), pp. 128–135.

6)

6. Li, J., Stoica, P.: ‘Mimo radar with colocated antennas’, IEEE Signal Process. Mag., 2007, 24, (5), pp. 106–114.

7)

7. Lipor, J., Ahmed, S., Alouini, M.S.: ‘Fourierbased transmit beampattern design using mimo radar’, IEEE Trans. Signal Process., 2014, 62, (9), pp. 2226–2235.

8)

8. Wang, Y.C., Wang, X., Liu, H., et al: ‘On the design of constant modulus probing signals for mimo radar’, IEEE Trans. Signal Process., 2012, 60, (8), pp. 4432–4438.

9)

9. Ahmed, S., Alouini, M.S.: ‘Mimoradar waveform covariance matrix for high SINR and low sidelobe levels’, IEEE Trans. Signal Process., 2014, 62, (8), pp. 2056–2065.

10)

10. Ahmed, S., Thompson, J., Petillot, Y., et al: ‘Finite alphabet constantenvelope waveform design for mimo radar’, IEEE Trans. Signal Process., 2011, 59, (11), pp. 5326–5337.

11)

11. Cui, G., Li, H., Rangaswamy, M.: ‘Mimo radar waveform design with constant modulus and similarity constraints’, IEEE Trans. Signal Process., 2014, 62, (2), pp. 343–353.

12)

12. Ahmed, S., Thompson, J., Petillot, Y., et al: ‘Unconstrained synthesis of covariance matrix for mimo radar transmit beampattern’, IEEE Trans. Signal Process., 2011, 59, (8), pp. 3837–3849.

13)

13. Stoica, P., Li, J., Zhu, X.: ‘Waveform synthesis for diversitybased transmit beampattern design’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 2593–2598.

14)

14. Imani, S., Ghorashi, S.: ‘Transmit signal and receive filter design in colocated mimo radar using a transmit weighting matrix’, IEEE Signal Process. Lett., 2015, 22, (10), pp. 1521–1524.

15)

15. Hua, G., Abeysekera, S.: ‘Mimo radar transmit beampattern design with ripple and transition band control’, IEEE Trans. Signal Process., 2013, 61, (11), pp. 2963–2974.

16)

16. Haghnegahdar, M., Imani, S., Ghorashi, S.A., et al: ‘SINR enhancement in colocated MIMO radar using transmit covariance matrix optimization’, IEEE Signal Process. Lett., 2017, 24, (3), pp. 339–343.

17)

17. Imani, S., Nayebi, M.M., Ghorashi, S.A.: ‘Transmit signal design in colocated mimo radar without covariance matrix optimization’, IEEE Trans. Aerosp. Electron. Syst., 2017, 99, (1), pp. 1–1.

18)

18. Haghnegahdar, M., Imani, S., Ghorashi, S.A., et al: ‘A new iterative approach in SINR improvement of MIMO radars by using combination of orthogonal waveforms’, Wirel. Pers. Commun., 2017, 97, pp. 2069–2085.

19)

19. Imani, S., Ghorashi, S.A.: ‘Sequential quasiconvexbased algorithm for waveform design in colocated multipleinput multipleoutput radars’, IET Signal Process., 2016, 10, (3), pp. 309–317.

20)

20. Karbasi, S.M., Aubry, A., Carotenuto, V., et al: ‘Knowledgebased design of space time transmit code and receive filter for a multipleinput multipleoutput radar in signaldependent interference’, IET Radar, Sonar Navig., 2015, 9, (398), pp. 1124–1135.

21)

21. Cui, G., Yu, X., Carotenuto, V., et al: ‘Spacetime transmit code and receive filter design for colocated mimo radar’, IEEE Trans. Signal Process., 2017, 65, (5), pp. 1116–1129.

22)

22. Haghnegahdar, M., Mehrshahi, E., Ghorashi, S.A: ‘Collocated ‘ULAMIMO radar waveform design with coherent detection of targets in background clutter’, Wireless pers commun’ (Springer, New York City, USA, 2018), pp. 1–14, .

23)

23. Trees, H.L.V.: ‘Optimum array processing part IV of detection, estimation, and modulation theory’ (John Wiley, Hoboken, New Jersey, USA, 2002).

24)

24. Liu, J., Li, H., Himed, B.: ‘Joint optimization of transmit and receive beamforming in active arrays’, IEEE Signal Process. Lett., 2014, 21, (1), pp. 39–42.

25)

25. Chen, C.Y., Vaidyanathan, P.P.: ‘Mimo radar waveform optimization with prior information of the extended target and clutter’, IEEE Trans. Signal Process., 2009, 57, (9), pp. 3533–3544.

26)

26. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, UK, 2004).

27)

27. Grant, M., Boyd, S.: .
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcom.2018.5723
Related content
content/journals/10.1049/ietcom.2018.5723
pub_keyword,iet_inspecKeyword,pub_concept
6
6