© The Institution of Engineering and Technology
This study proposes some multivariable approaches for power allocation in orthogonal frequency multiple accessbased differential chaos shift keying (OFDMDCSK) system. The objective is to minimise the overall bit error rate (BER) under the total transmission power limit. There is some literature focusing on the power allocation for OFDMDCSK systems, but all of them have only addressed the case where the power allocated to the reference subcarrier is assumed to be equal to one to simplify the problem to a singlevariable optimisation problem. In this study, the authors simultaneously take the reference and databearing subcarriers power into consideration. They formulate a multivariable optimisation problem and solve it using Lagrange relaxation to derive a closed form solution. As the main contribution, the problem is converted to a cubic equation which is solved theoretically. Since the equation is nonconvex, they solve it again using a genetic algorithm (GA)based method for additive white Gaussian noise channel as a case study. The heuristic algorithm validates the theoretical approach. As another conclusion, the simulation results indicate that both of the proposed approaches outperform algorithms relaxing the reference power in terms of the BER performance, but the analytical solution leads to less time complexity in comparison with the GAbased method.
References


1)

1. Kaddoum, G.: ‘Wireless chaosbased communication systems: a comprehensive survey’, IEEE Access, 2016, 4, pp. 2621–2648.

2)

2. Quyen, N.X., Kyamakya, K.: ‘Chaosbased digital communication systems with low datarate wireless applications’, in Kyandoghere, Kyamakya, Wolfgang, Mathis, Ruedi, Stoop, et al (Eds.): ‘Recent advances in nonlinear dynamics and synchronization’ (Springer, Cham, Switzerland, 2018), pp. 239–269.

3)

3. Quyen, N.X., Lam, N.T., Nguyen, N.P., et al: ‘Chaosbased spreadspectrum using Mary PSK and OFDMMIMO’. Int. Conf. on Recent Advances in Signal Processing, Telecommunications & Computing, Da Nang, Vietnam, 2017, pp. 205–210.

4)

4. Kumar, A., Sahu, P.R.: ‘Performance analysis of differential chaos shift keying modulation with transmit antenna selection’. IET Commun., 2016, 10, (3), pp. 327–335.

5)

5. Giurcaneanu, C., Abeywickrama, R.V., Berber, S: ‘Performance analysis for a chaosbased codedivision multiple access system in wideband channel’, 2015.

6)

6. Movassaghi, S., Majidi, A., Jamalipour, A., et al: ‘Enabling interferenceaware and energyefficient coexistence of multiple wireless body area networks with unknown dynamics’, IEEE. Access., 2016, 4, pp. 2935–2951.

7)

7. Mazzini, G., Rovatti, R., Setti, G.: ‘Chaosbased spreading in DSUWB sensor networks increases available bit rate’, IEEE Trans. Circuits Syst.I, 2007, 54, (6), pp. 1327–1339.

8)

8. Chong, C.C., Yong, S.K.: ‘UWB direct chaotic communication technology for lowrate WPAN applications’, IEEE Trans. Veh. Technol., 2008, 57, pp. 1527–1536.

9)

9. Kolumbbn, G., Vizvbi, B., Schwarz, W., et al: ‘Differential chaos shift keying: a robust coding for chaotic communication’. In Proc. Nonlinear Dynamics of Electronic Systems (NDES), Seville, 1996, vol. 96, pp. 87–92.

10)

10. Herceg, M., Vranješ, D., Kaddoum, G., et al: ‘Commutation code Index DCSK modulation technique for highdatarate communication systems’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 65, (12), pp. 1954–1958.

11)

11. Kaddoum, G., Richardson, F.D., Adouni, S., et al: ‘Multiuser multicarrier differential chaos shift keying communication system’. IEEE 2013 9th Int. in Wireless Communications and Mobile Computing Conf. (IWCMC), Sardinia, Italy, 2013, pp. 1798–1802.

12)

12. Li, S., Zhao, Y., Wu, Z.: ‘Design and analysis of an OFDMbased differential chaos shift keying communication system’, J. Commun., 2015, 10, (3), pp. 199–205.

13)

13. Xu, W., Lin, W., Tingting, H.: ‘Optimal power allocation in MCDCSK communication system’. 14th Int. Symp. on Communications and Information Technologies (ISCIT), Incheon, Korea, 2014, pp. 313–317.

14)

14. Mobini, M., Zahabi, M.R.: ‘Power allocation for multiuser OFDMDCSK system in frequency selective fading channel’, Phys. Commun., 2017, 24, pp. 146–153.

15)

15. Mobini, M., Zahabi, M.R.: ‘Design and analysis of a DCSKbased cognitive radio system using hybrid underlay/overlay transmission’, J. Ambient Intell. Humaniz. Comput., 2018, 10, (6), pp. 2315–2325.

16)

16. Elmesalawy, M., Fadeel, G.A., Ibrahim, I.: ‘Geneticbased subcarrier and bit allocation algorithm for multiuser OFDM system’. In Seventh International Network Conference (INC 2008), Plymouth, UK, 2008, pp. 39–52.

17)

17. Ge, X., Cheng, H., Guizani, M., et al: ‘5G wireless backhaul networks: challenges and research advances’, IEEE Netw., 2014, 28, (6), pp. 6–11.

18)

18. Tabassum, M., Mathew, K.: ‘A genetic algorithm analysis towards optimization solutions’, Int. J. Digit. Inf. Wirel. Commun. (IJDIWC), 2014, 4, (1), pp. 124–142.

19)

19. Varade, P.S., Yerram, R.: ‘Quality constrained multiattribute energyefficient resource allocation for heterogeneous cognitive radio networks’, IET Commun., 2018, 12, (18), pp. 2290–2296.

20)

20. Zhou, G., Li, Y., He, Y.C., et al: ‘Artificial fish swarm based power allocation algorithm for MIMOOFDM relay underwater acoustic communication’, IET Commun., 2018, 12, (9), pp. 1079–1085.

21)

21. Kolumbán, G., Kis, G., Jákó, Z., et al: ‘FMDCSK: a robust modulation scheme for chaotic communications’, IEICE Trans. Fundamentals of Electron., Commun. Comput., 1998, 89, pp. 1798–1802.

22)

22. Xia, Y., Tse, C.K., Lau, F.C.M.: ‘Performance of differential chaosshiftkeying digital communication systems over a multipath fading channel with delay spread’, IEEE Trans. Circuits and Systems II, 2004, 51, pp. 680–684.

23)

23. Lemaréchal, C.: ‘Lagrangian relaxation’, in Junger, M., Naddef, D. (Eds.): ‘Computational combinatorial optimization’ (Springer, Berlin, Heidelberg, 2001), pp. 112–156.

24)

24. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, 2004).

25)

25. Needham, T.: ‘Visual complex analysis’ (Oxford University Press, Oxford, 1998).
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcom.2018.5714
Related content
content/journals/10.1049/ietcom.2018.5714
pub_keyword,iet_inspecKeyword,pub_concept
6
6