Multivariable optimisation approach for power allocation in OFDM-DCSK system

Multivariable optimisation approach for power allocation in OFDM-DCSK system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes some multivariable approaches for power allocation in orthogonal frequency multiple access-based differential chaos shift keying (OFDM-DCSK) system. The objective is to minimise the overall bit error rate (BER) under the total transmission power limit. There is some literature focusing on the power allocation for OFDM-DCSK systems, but all of them have only addressed the case where the power allocated to the reference subcarrier is assumed to be equal to one to simplify the problem to a single-variable optimisation problem. In this study, the authors simultaneously take the reference and data-bearing subcarriers power into consideration. They formulate a multivariable optimisation problem and solve it using Lagrange relaxation to derive a closed form solution. As the main contribution, the problem is converted to a cubic equation which is solved theoretically. Since the equation is non-convex, they solve it again using a genetic algorithm (GA)-based method for additive white Gaussian noise channel as a case study. The heuristic algorithm validates the theoretical approach. As another conclusion, the simulation results indicate that both of the proposed approaches outperform algorithms relaxing the reference power in terms of the BER performance, but the analytical solution leads to less time complexity in comparison with the GA-based method.


    1. 1)
      • 1. Kaddoum, G.: ‘Wireless chaos-based communication systems: a comprehensive survey’, IEEE Access, 2016, 4, pp. 26212648.
    2. 2)
      • 2. Quyen, N.X., Kyamakya, K.: ‘Chaos-based digital communication systems with low data-rate wireless applications’, in Kyandoghere, Kyamakya, Wolfgang, Mathis, Ruedi, Stoop, et al (Eds.): ‘Recent advances in nonlinear dynamics and synchronization’ (Springer, Cham, Switzerland, 2018), pp. 239269.
    3. 3)
      • 3. Quyen, N.X., Lam, N.T., Nguyen, N.P., et al: ‘Chaos-based spread-spectrum using M-ary PSK and OFDM-MIMO’. Int. Conf. on Recent Advances in Signal Processing, Telecommunications & Computing, Da Nang, Vietnam, 2017, pp. 205210.
    4. 4)
      • 4. Kumar, A., Sahu, P.R.: ‘Performance analysis of differential chaos shift keying modulation with transmit antenna selection’. IET Commun., 2016, 10, (3), pp. 327335.
    5. 5)
      • 5. Giurcaneanu, C., Abeywickrama, R.V., Berber, S: ‘Performance analysis for a chaos-based code-division multiple access system in wide-band channel’, 2015.
    6. 6)
      • 6. Movassaghi, S., Majidi, A., Jamalipour, A., et al: ‘Enabling interference-aware and energy-efficient coexistence of multiple wireless body area networks with unknown dynamics’, IEEE. Access., 2016, 4, pp. 29352951.
    7. 7)
      • 7. Mazzini, G., Rovatti, R., Setti, G.: ‘Chaos-based spreading in DSUWB sensor networks increases available bit rate’, IEEE Trans. Circuits Syst.-I, 2007, 54, (6), pp. 13271339.
    8. 8)
      • 8. Chong, C.C., Yong, S.K.: ‘UWB direct chaotic communication technology for low-rate WPAN applications’, IEEE Trans. Veh. Technol., 2008, 57, pp. 15271536.
    9. 9)
      • 9. Kolumbbn, G., Vizvbi, B., Schwarz, W., et al: ‘Differential chaos shift keying: a robust coding for chaotic communication’. In Proc. Nonlinear Dynamics of Electronic Systems (NDES), Seville, 1996, vol. 96, pp. 8792.
    10. 10)
      • 10. Herceg, M., Vranješ, D., Kaddoum, G., et al: ‘Commutation code Index DCSK modulation technique for high-data-rate communication systems’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 65, (12), pp. 19541958.
    11. 11)
      • 11. Kaddoum, G., Richardson, F.D., Adouni, S., et al: ‘Multi-user multi-carrier differential chaos shift keying communication system’. IEEE 2013 9th Int. in Wireless Communications and Mobile Computing Conf. (IWCMC), Sardinia, Italy, 2013, pp. 17981802.
    12. 12)
      • 12. Li, S., Zhao, Y., Wu, Z.: ‘Design and analysis of an OFDM-based differential chaos shift keying communication system’, J. Commun., 2015, 10, (3), pp. 199205.
    13. 13)
      • 13. Xu, W., Lin, W., Tingting, H.: ‘Optimal power allocation in MC-DCSK communication system’. 14th Int. Symp. on Communications and Information Technologies (ISCIT), Incheon, Korea, 2014, pp. 313317.
    14. 14)
      • 14. Mobini, M., Zahabi, M.R.: ‘Power allocation for multi-user OFDM-DCSK system in frequency selective fading channel’, Phys. Commun., 2017, 24, pp. 146153.
    15. 15)
      • 15. Mobini, M., Zahabi, M.R.: ‘Design and analysis of a DCSK-based cognitive radio system using hybrid underlay/overlay transmission’, J. Ambient Intell. Humaniz. Comput., 2018, 10, (6), pp. 23152325.
    16. 16)
      • 16. Elmesalawy, M., Fadeel, G.A., Ibrahim, I.: ‘Genetic-based subcarrier and bit allocation algorithm for multiuser OFDM system’. In Seventh International Network Conference (INC 2008), Plymouth, UK, 2008, pp. 3952.
    17. 17)
      • 17. Ge, X., Cheng, H., Guizani, M., et al: ‘5G wireless backhaul networks: challenges and research advances’, IEEE Netw., 2014, 28, (6), pp. 611.
    18. 18)
      • 18. Tabassum, M., Mathew, K.: ‘A genetic algorithm analysis towards optimization solutions’, Int. J. Digit. Inf. Wirel. Commun. (IJDIWC), 2014, 4, (1), pp. 124142.
    19. 19)
      • 19. Varade, P.S., Yerram, R.: ‘Quality constrained multi-attribute energy-efficient resource allocation for heterogeneous cognitive radio networks’, IET Commun., 2018, 12, (18), pp. 22902296.
    20. 20)
      • 20. Zhou, G., Li, Y., He, Y.C., et al: ‘Artificial fish swarm based power allocation algorithm for MIMO-OFDM relay underwater acoustic communication’, IET Commun., 2018, 12, (9), pp. 10791085.
    21. 21)
      • 21. Kolumbán, G., Kis, G., Jákó, Z., et al: ‘FM-DCSK: a robust modulation scheme for chaotic communications’, IEICE Trans. Fundamentals of Electron., Commun. Comput., 1998, 89, pp. 17981802.
    22. 22)
      • 22. Xia, Y., Tse, C.K., Lau, F.C.M.: ‘Performance of differential chaos-shift-keying digital communication systems over a multipath fading channel with delay spread’, IEEE Trans. Circuits and Systems II, 2004, 51, pp. 680684.
    23. 23)
      • 23. Lemaréchal, C.: ‘Lagrangian relaxation’, in Junger, M., Naddef, D. (Eds.): ‘Computational combinatorial optimization’ (Springer, Berlin, Heidelberg, 2001), pp. 112156.
    24. 24)
      • 24. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, 2004).
    25. 25)
      • 25. Needham, T.: ‘Visual complex analysis’ (Oxford University Press, Oxford, 1998).

Related content

This is a required field
Please enter a valid email address