access icon free 4-ary 14/16 modulation code for reducing two-dimensional inter-symbol interference

Holographic data storage (HDS) can access data in a short amount of time and can also quickly transmit data because HDS records and reads data in units of pages. Thus HDS is regarded as a promising candidate for future optical recording storage systems. Conventional storage systems such as CD, DVD, and HDD have one-dimensional (1D) inter-symbol interference (ISI). However, HDS has a 2D ISI that degrades performance. In this study, to avoid and overcome the 2D-ISI problem, the authors propose a 14/16 modulation code for 4-ary HDS systems which represents 2 bits on each pixel. The proposed 14/16 modulation code allows a bit of unwanted ISI cases in order to raise the code rate, but it has a higher code rate but similar performance compared to a 3/4 modulation code that has no unwanted ISI cases.

Inspec keywords: holographic storage; intersymbol interference; modulation coding

Other keywords: 2D-ISI problem; two-dimensional intersymbol interference; holographic data storage; code rate; word length 2.0 bit; optical recording storage systems; 4-ary 14/16 modulation code; HDS records; 4-ary HDS systems

Subjects: Optical storage and retrieval; Holography; Codes; Optical storage and retrieval; Electromagnetic compatibility and interference; Optical storage

References

    1. 1)
      • 11. Nguyen, C.D., Lee, J.: ‘Iterative readback-aided detection for holopraphic data storage systems’, Electron. Lett., 2016, 52, (17), pp. 14361438.
    2. 2)
      • 6. Psaltis, D., Levene, M., Barbastathis, G., et al: ‘Holographic storage using shift multiplexing’, Opt. Lett., 1995, 20, (7), pp. 782784.
    3. 3)
      • 2. Vadde, V., Kumar, B.V.K.V.: ‘Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage’, Appl. Opt., 1999, 38, (20), pp. 43744386.
    4. 4)
      • 1. Hesselink, L., Orlov, S.S., Bashaw, M.C.: ‘Holographic data storage systems’, Proc. IEEE, 2004, 92, (8), pp. 12311280.
    5. 5)
      • 17. Jeong, S., Lee, J.: ‘4-level 3/4 modulation code for holographic data storage’, J. Inst. Electron. Inf. Eng., 2015, 52, (9), pp. 15761580.
    6. 6)
      • 5. Shelby, R.M., Hoffnagle, J.A., Burr, G.W., et al: ‘Pixel-matched holographic data storage with megabit pages’, Opt. Lett., 1997, 22, (19), pp. 15091511.
    7. 7)
      • 19. Keskinoz, M., Kumar, B.V.K.V.: ‘Efficient modeling of volume holographic storage channels (VHSC)’. Proc. SPIE, Whistler, Canada, September 2000, pp. 205210.
    8. 8)
      • 15. Wachsmann, U., Fischer, R.F.H., Huber, J.B.: ‘Multilevel codes: theoretical concepts and practical design rules’, IEEE Trans. Inf. Theory, 1999, 45, (5), pp. 13611391.
    9. 9)
      • 8. Kong, G., Choi, S.: ‘Enhanced 2/3 four-ary modulation code using soft-decision viterbi decoding for four-level holographic data storage systems’, Jpn. J. Appl. Phys., 2017, 56, (9S), p. 09NA06.
    10. 10)
      • 12. Kim, J., Moon, Y., Lee, J.: ‘Iterative decoding between two-dimensional soft output viterbi algorithm and error correcting modulation code for holographic data storage’, Jpn. J. Appl. Phys., 2011, 50, (9S1), p. 09MB02.
    11. 11)
      • 3. Tajima, K., Nakamura, Y., Hoshizawa, T.: ‘High-density recording in holographic data storage system by dual 2-level run-length-limited modulation’, Jpn. J. Appl. Phys., 2016, 55, (9S), p. 09SA09.
    12. 12)
      • 7. Srinivasa, S.G., Momtahan, O., Karbaschi, A., et al: ‘M-ary, binary, and space-volume multiplexing trade-offs for holographic channels’. IEEE Globecom ‘06, San Francisco, USA, November 2006, pp. 15.
    13. 13)
      • 9. Kim, B., Lee, J.: ‘2-D non-isolated pixel 6/8 modulation code’, IEEE. Trans. Magn., 2014, 50, (7), p. 3501404.
    14. 14)
      • 10. Kim, T., Kong, G., Choi, S.: ‘Two-dimensional equalization using bilinear recursive polynomial model for holographic data storage systems’, Jpn. J. Appl. Phys., 2012, 51, (8S2), p. 08JD05.
    15. 15)
      • 16. King, B.M., Neifeld, M.A.: ‘Sparse modulation coding for increased capacity in volume holographic storage’, Appl. Optics, 2000, 39, (35), pp. 66816688.
    16. 16)
      • 13. Koo, K., Kim, S., Jeong, J., et al: ‘Two-dimensional soft output viterbi algorithm with a variable reliability factor for holographic data storage’, Jpn. J. Appl. Phys., 2013, 52, (9S2), p. 09LE03.
    17. 17)
      • 14. Kong, G., Choi, S.: ‘Effective two-dimensional partial response maximum likelihood detection scheme for holographic data storage systems’, Jpn. J. Appl. Phys., 2012, 51, (8S2), p. 08JB06.
    18. 18)
      • 18. Pansatiankul, D.E., Sawchuk, A.A.: ‘Multidimensional modulation codes and error correction for page-oriented optical data storage’. Proc. SPIE, Santa Fe, USA, January 2002, pp. 393400.
    19. 19)
      • 4. Nakamura, Y., Hoshizawa, T.: ‘Two high-density recording methods with run-length limited turbo code for holographic data storage system’, Jpn. J. Appl. Phys., 2016, 55, (9S), p. 09SA01.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5710
Loading

Related content

content/journals/10.1049/iet-com.2018.5710
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading