Comparison of adaptive algorithms for free space optical transmission in Málaga atmospheric turbulence channel with pointing errors

Comparison of adaptive algorithms for free space optical transmission in Málaga atmospheric turbulence channel with pointing errors

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors investigate average capacity of free space optics communication over Málaga atmospheric turbulence channel with pointing errors and path loss, for intensity modulated/direct detection (IM/DD) and heterodyne detection. Various algorithms which use adaptive transmission with both types of detection are considered, such as: optimal rate adaption (ORA), optimal power and rate adaption (OPRA), channel inversion with fixed rate (CIFR) and truncated channel inversion with fixed rate (TIFR). Analytical closed-form expressions for channel capacities of ORA, OPRA and TIFR adaptive transmission are presented, and the authors prove that CIFR transmission is not feasible in the strict sense for the conditions considered. Obtained analytical results are numerically evaluated and graphically presented for different strengths of atmospheric turbulence (in weak, moderate and strong turbulence regime) for both types of detection (IM/DD and heterodyne), and for considered algorithms of adaptive transmission (ORA, OPRA and TIFR). The authors have developed expressions suitable for approximating high signal-to-noise ratio channel capacity, and they graphically present and compare the asymptotic approximations with the obtained analytical results for different strengths of turbulence for both types of detection. Also, obtained analytical results were confirmed by Monte-Carlo simulations, and graphically compared for different strengths of turbulence regimes.


    1. 1)
      • 1. Hranilovic, S.: ‘Wireless optical communication systems’ (Springer, New York, 2005).
    2. 2)
      • 2. Arnon, S., Barry, J.R., Karagiannidis, G.K., et al: ‘Advanced optical wireless communication systems’ (Cambridge University Press, Cambridge UK, 2012).
    3. 3)
      • 3. Andrews, L.C., Phillips, R.L.: ‘Laser beam propagation through random media’ (SPIE, Bellingham WA, USA, 2005).
    4. 4)
      • 4. Willebrand, H., Ghuman, B.S.: ‘Free space optics: enabling optical connectivity in today's networks’ (SAMS, Indianopolis USA, 2002).
    5. 5)
      • 5. Lapidoth, A., Moser, S.M., Wigger, M.A.: ‘On the capacity of free-space optical intensity channels’, IEEE Trans. Inf. Theory, 2009, 55, (10), pp. 44494461.
    6. 6)
      • 6. Al-Habash, M.A., Andrews, L.C., Phillips, R.L.: ‘Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media’, Opt. Eng., 2001, 40, (8), pp. 15541562.
    7. 7)
      • 7. Garrido-Balsells, J.M., Jurado-Navas, A., Paris, J.F., et al: ‘Novel formulation of the m model through the generalized – k distribution for atmospheric optical channels’, Opt. Express, 2015, 23, (5), pp. 63456358.
    8. 8)
      • 8. Garrido-Balsells, J.M., Lopez-Martinez, F.J., Castillo-Vázquez, M., et al: ‘Performance analysis of FSO communications under los blockage’, Opt. Express, 2017, 25, (21), pp. 1255012562.
    9. 9)
      • 9. Simon, M.K., Alouini, M.S.: ‘Digital communication over fading channels’ (John Wiley & Sons Inc., Hoboken, NJ, 2005).
    10. 10)
      • 10. Jurado–Navas, A., Maria, J., Francisco, J., et al: ‘A unifying statistical model for atmospheric optical scintillation’, in Awrejcewicz, Jan (Eds.): ‘Numerical simulations of physical and engineering processes’ (InTech, Croatia, 2011), pp. 181206.
    11. 11)
      • 11. Alheadary, W.G., Park, H.K., Alouini, M.S.: ‘Performance analysis of subcarrier intensity modulation using rectangular QAM over Malaga turbulence channels with integer and non-integer β’, Wirel. Commun. Mob. Comput., 2016, 16, pp. 27302742.
    12. 12)
      • 12. López-González, F.J., Jurado-Navas, A., Garrido-Balsells, J.M., et al: ‘Characterization of sub-channel based Málaga atmospheric optical links with real β parameter’, Opt. Appl., 2017, XLVII, (4), pp. 545556.
    13. 13)
      • 13. Ansari, I.S., Yilmaz, F., Alouini, M.S.: ‘Performance analysis of free-space optical links over málaga (m) turbulence channels with pointing errors’, IEEE Trans. Wirel. Commun., 2016, 15, (1), pp. 91102.
    14. 14)
      • 14. Amirabadi, M.A., Tabataba Vakili, V.: ‘A new optimization problem in FSO communication system’, IEEE Commun. Lett., 2018, 22, (7), pp. 14421445.
    15. 15)
      • 15. Amirabadi, M.A., Tabataba Vakili, V.: ‘A novel hybrid FSO/RF communication system with receive diversity’, Signal Process., 2018, pp. 15. Available at
    16. 16)
      • 16. Balaji, K.A., Prabu, K.: ‘Performance evaluation of FSO system using wavelength and time diversity over Malaga turbulence channel with pointing errors’, Opt. Commun., 2018, 410, pp. 643651.
    17. 17)
      • 17. Chen, L., Wang, W.: ‘Multi-diversity combining and selection for relay-assisted mixed RF/FSO system’, Opt. Commun., 2017, 405, pp. 17.
    18. 18)
      • 18. Nguyen, N.T.T., Vu, M.Q., Pham, H.T.T., et al: ‘Performance enhancement of HAP-based relaying M-PPM FSO system using spatial diversity and heterodyne detection receiver’, J. Opt. Commun., 2018, pp. 110.
    19. 19)
      • 19. Ansari, I.S., Alouini, M.S., Cheng, J.: ‘Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors’, IEEE Trans. Wirel. Commun., 2015, 14, (8), pp. 42484264.
    20. 20)
      • 20. Nistazakis, H.E., Karagianni, E.A., Tsigopoulos, A.D., et al: ‘Average capacity of optical wireless communication systems over atmospheric turbulence channels’, J. Lightwave Technol., 2009, 27, (8), pp. 974979.
    21. 21)
      • 21. Peppas, K.P., Stassinakis, A.N., Topalis, G.K., et al: ‘Average capacity of optical wireless communication systems over I-K atmospheric turbulence channels’, J. Opt. Commun. Netw., 2012, 4, (12), pp. 10261032.
    22. 22)
      • 22. Nistazakis, H.E., Tombras, G.S., Tsigopoulos, A.D., et al: ‘Capacity estimation of optical wireless communication systems over moderate to strong turbulence channels’, Journal of Communications and Networks, 2009, 11, (4), pp. 384389.
    23. 23)
      • 23. Peppas, K.P., Stassinakis, A.N., Nistazakis, H.E., et al: ‘Capacity analysis of dual amplify-and-forward relayed free-space optical communication systems over turbulence channels with pointing errors’, J. Opt. Commun. Netw., 2013, 5, (9), pp. 10321042.
    24. 24)
      • 24. Hassan, M.Z., Hossain, M.J., Cheng, J.: ‘Ergodic capacity comparison of optical wireless communications using adaptive transmissions’, Opt. Express, 2013, 21, (17), pp. 2034620362.
    25. 25)
      • 25. Anees, S., Bhatnagar, M.R.: ‘Information theoretic analysis of a dual-hop fixed gain af based mixed RF-FSO system’. 2015 IEEE 26th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, 2015, pp. 927931.
    26. 26)
      • 26. Gappmair, W.: ‘Further results on the capacity of free-space optical channels in turbulent atmosphere’, IET Commun., 2011, 5, (9), pp. 12621267.
    27. 27)
      • 27. Kikuchi, K.: ‘High spectral density optical communication technologies’ (Springer, Berlin, Heidelberg, 2010).
    28. 28)
      • 28. Andrews, L.C., Phillips, R.L., Young, C.Y.: ‘Laser beam scintillation with applications’ (SPIE, WA, 2001).
    29. 29)
      • 29. Petković, M.I., Djordjević, G.T., Milić, D.N.: ‘Ber performance of IM/DD FSO system with ook using apd receiver’, Radioengineering, 2014, 23, (1), pp. 480487.
    30. 30)
      • 30. Petković, M., Djordjević, G.T: ‘Average BER of dual-branch FSO system employing sim-bpsk influenced by Malaga atmospheric turbulence with pointing errors’. Proc. of 4th Int. Conf. on Electrical,Electronics and Computing Engineering,(IcETRAN 2017). (Society for Electronics, Telecommunications, Computers, Automatic Control and Nuclear Engineering), Kladovo, 2017, pp. TEI1.4.1TEI1.4.6.
    31. 31)
      • 31. Stefanović, M.Č., Anastasov, J.A., Panić, S.R., et al: ‘Channel capacity analysis under various adaptation policies and diversity techniques over fading channels’, in Ali, Eksim (Eds.): ‘Wireless communications and networks - recent advances’ (InTech, Croatia, 2012), pp. 281302.
    32. 32)
      • 32. Prudnikov, A.P., Brychkov, J.A.: ‘Integrasl and series’ (Fizmatlit, Moscow, 2003).
    33. 33)
      • 33. W.R. Inc.: ‘Wolfram functions site’. (Wolfram Research, Inc., 2019. Available at:

Related content

This is a required field
Please enter a valid email address