access icon openaccess WDM for multi-user indoor VLC systems with SCM

A system that employs wavelength division multiplexing (WDM) in conjunction with sub-carrier multiplexing (SCM) tones is proposed to realise high data rate multi-user indoor visible light communication (VLC). The SCM tones, which are unmodulated signals, are used to identify each light unit, to find the optimum light unit for each user and to calculate the level of the co-channel interference (CCI). WDM is utilised to attain a high data rate for each user. In this study, multi-colour (four colours) laser diodes are utilised as sources of lighting and data communication. One of the WDM colours is used to convey the SCM tones at the beginning of the connection to set up the connection among receivers and light units (to find the optimum light unit for each user). To evaluate the performance of the VLC system, two types of receivers are proposed: an array of non-imaging receivers and an array of non-imaging angle diversity receivers. In this study, the effects of diffuse reflections, CCI and mobility on the system performance are considered.

Inspec keywords: optical fibre networks; light emitting diodes; indoor communication; wavelength division multiplexing; optical receivers; optical communication; diversity reception

Other keywords: multicolour laser diodes; high data rate multiuser indoor; optimum light unit; four colours; WDM colours; lighting; SCM tones; CCI; system performance; nonimaging angle diversity receivers; multiuser indoor VLC systems; unmodulated signals; nonimaging receivers; VLC system; sub-carrier multiplexing tones; data communication

Subjects: Optical fibre networks; Light emitting diodes; Optical communication equipment; Other topics in statistics; Electromagnetic compatibility and interference; Radio links and equipment; Free-space optical links; Multiplexing and switching in optical communication

References

    1. 1)
      • 9. Bykhovsky, D., Arnon, S.: ‘Multiple access resource allocation in visible light communication systems’, J. Lightwave Technol., 2014, 32, pp. 15941600.
    2. 2)
      • 14. Younus, S.H., Al-Hameed, A., Hussein, A.T., et al: ‘Parallel data transmission in indoor visible light communication systems’, IEEE. Access., 2019, 7, pp. 11261138.
    3. 3)
      • 18. Neumann, A., Wierer, J.J., Davis, W., et al: ‘Four-color laser white illuminant demonstrating high color-rendering quality’, Opt. Express, 2011, 19, pp. A982A990.
    4. 4)
      • 3. Zhao, Q., Fan, Y., Deng, L., et al: ‘A power-efficient ZF precoding scheme for multi-user indoor visible light communication systems’, Opt. Commun., 2017, 384, pp. 101106.
    5. 5)
      • 20. Hussein, A.T., Elmirghani, J.M.H.: ‘Mobile multi-gigabit visible light communication system in realistic indoor environment’, J. Lightwave Technol., 2015, 33, pp. 32933307.
    6. 6)
      • 29. Leskovar, B.: ‘Optical receivers for wide band data transmission systems’, IEEE Trans. Nucl. Sci., 1989, 36, pp. 787793.
    7. 7)
      • 10. Sewaiwar, A., Tiwari, S.V., Chung, Y.H.: ‘Smart LED allocation scheme for efficient multiuser visible light communication networks’, Opt. Express, 2015, 23, pp. 1301513024.
    8. 8)
      • 1. Chi, N., Shi, J.: ‘Investigation on overlapping interference on VLC networks consisting of multiple LEDs’, ICT Express, 2015.
    9. 9)
      • 7. Yin, L., Popoola, W.O., Wu, X., et al: ‘Performance evaluation of non-orthogonal multiple access in visible light communication’, IEEE Trans. Commun., 2016, 64, pp. 51625175.
    10. 10)
      • 25. Al-Ghamdi, A., Elmirghani, J.M.: ‘Optimization of a triangular PFDR antenna in a fully diffuse OW system influenced by background noise and multipath propagation’, IEEE Trans. Commun., 2003, 51, pp. 21032114.
    11. 11)
      • 16. Alresheedi, M.T., Elmirghani, J.M.: ‘Hologram selection in realistic indoor optical wireless systems with angle diversity receivers’, J. Opt. Commun. Netw., 2015, 7, pp. 797813.
    12. 12)
      • 24. Younus, S.H., Hussein, A.T., Thameralresheedi, M., et al: ‘CGH for indoor visible light communication system’, IEEE. Access., 2017, 5, pp. 2498825004.
    13. 13)
      • 4. Hong, Y., Chen, J., Wang, Z., et al: ‘Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications’, IEEE Photonics J., 2013, 5, pp. 78002117800211.
    14. 14)
      • 31. Kahn, J.M., Barry, J.R.: ‘Wireless infrared communications’, Proc. IEEE, 1997, 85, pp. 265298.
    15. 15)
      • 26. Ding, J., Chih-Lin, I., Xu, Z.: ‘Indoor optical wireless channel characteristics with distinct source radiation patterns’, IEEE Photonics J., 2016, 8, pp. 115.
    16. 16)
      • 23. Younus, S.H., Elmirghani, J.M.: ‘WDM for high-speed indoor visible light communication system’. 2017 19th Int. Conf. on Transparent Optical Networks (ICTON), Girona, Spain, 2017, pp. 16.
    17. 17)
      • 13. Lin, B., Tang, X., Ghassemlooy, Z., et al: ‘Experimental demonstration of an indoor VLC positioning system based on OFDMA’, IEEE Photonics J., 2017, 9, pp. 19.
    18. 18)
      • 15. Gfeller, F.R., Bapst, U.: ‘Wireless in-house data communication via diffuse infrared radiation’, Proc. IEEE, 1979, 67, pp. 14741486.
    19. 19)
      • 30. Alresheedi, M.T., Hussein, A.T., Elmirghani, J.M.: ‘Uplink design in VLC systems with IR sources and beam steering’, IET Commun., 2017, 11, pp. 311317.
    20. 20)
      • 21. Komine, T., Nakagawa, M.: ‘Fundamental analysis for visible-light communication system using LED lights’, IEEE Trans. Consum. Electron., 2004, 50, pp. 100107.
    21. 21)
      • 5. Feng, R., Dai, M., Wang, H., et al: ‘Linear precoding for multiuser visible light communication with field of view diversity’.
    22. 22)
      • 12. Ho, K.-P., Kahn, J.M.: ‘Methods for crosstalk measurement and reduction in dense WDM systems’, J. Lightwave Technol., 1996, 14, pp. 11271135.
    23. 23)
      • 28. Wu, D., Zhong, W.-D., Ghassemlooy, Z., et al: ‘Short-range visible light ranging and detecting system using illumination light emitting diodes’, IET Optoelectron., 2016, 10, pp. 9499.
    24. 24)
      • 2. Pathak, P.H., Feng, X., Hu, P., et al: ‘Visible light communication, networking, and sensing: a survey, potential and challenges’, IEEE Commun. Surv. Tutorials, 2015, 17, pp. 20472077.
    25. 25)
      • 32. Djahani, P., Kahn, J.M.: ‘Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers’, IEEE Trans. Commun., 2000, 48, pp. 20772088.
    26. 26)
      • 22. Shang, T., Jiang, T., Yang, Y.T., et al: ‘Multi-users network model and the corresponding networking scheme for indoor VLC systems’, Opt. Express, 2015, 23, pp. 1160011618.
    27. 27)
      • 17. Wu, T.-C., Chi, Y.-C., Wang, H.-Y., et al: ‘Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s’, Sci. Rep., 2017, 7, p. 11.
    28. 28)
      • 6. Shoreh, M.H., Fallahpour, A., Salehi, J.A.: ‘Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications’, J. Opt. Commun. Netw., 2015, 7, pp. 554562.
    29. 29)
      • 27. Alsaadi, F.E., Elmirghani, J.M.H.: ‘Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers’, IEEE/OSA J. Opt. Commun. Networking, 2011, 3, pp. 2739.
    30. 30)
      • 11. Al-Hameed, A., Hussein, A.T., Alresheedi, M.T., et al: ‘Transmitters mapping of visible light communication system’. 19th Int. Conf. on Transparent Optical Networks (ICTON 2017), Girona, Spain, 2017.
    31. 31)
      • 19. ‘European standard EN 12464–1: Lighting of indoor work places’. Available at http://www.etaplighting.com/upoadedFiles/Downloadable_documentation/documentatie/EN12464_E_OK.pdf, last access on 01/02/2015.
    32. 32)
      • 8. Marshoud, H., Sofotasios, P.C., Muhaidat, S., et al: ‘On the performance of visible light communications systems with non-orthogonal multiple access’, IEEE Trans. Wirel. Commun., 2017, 16, (10), pp. 63506364.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5664
Loading

Related content

content/journals/10.1049/iet-com.2018.5664
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading