http://iet.metastore.ingenta.com
1887

Visible light positioning based on architecture information: method and performance

Visible light positioning based on architecture information: method and performance

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper a novel 2-D range free positioning method which uses visible light communications network architecture is presented. The algorithm performance for lattice and hexagonal LED lighting infrastructure deployment is obtained by computational simulation. The robustness of our method against changes on receiver's field of view and mismatch between the assumed vertical distance and real vertical position is simulated in a room of dimensions 5 × 5 × 2.5 m. A localization interest zone with receiver's height between 0.5 and 1.1 m measured from the floor is considered as variation on vertical distance. Moreover, FOV's ranging from 90° to 130° are used to measure the behaviour of the method when different built-in photo detectors are incorporated in the mobile device. Our algorithm overcomes three traditional localization methods, i.e., convex position estimation, centroid and received signal strength based trilateration when changes in the FOV occurs. In addition to this, it shows better accuracy than other range free algorithms when an assumed height difference mismatch of up to 30 cm exist. The method shows better coverage than range based methods being able to reduce border effects and perform localization with reliable accuracy using only one connected cell and a single photo detector.

References

    1. 1)
      • 1. Van Slyke, C.: ‘Information communication technologies: concepts, methodologies, tools and applications’ (Information Science Reference, New York, US, 2008).
    2. 2)
      • 2. Yassin, A., Nasser, Y., Awad, M., et al: ‘Recent advances in indoor localization: A survey on theoretical approaches and applications’, IEEE Commun. Surv. Tutor., 2017, 19, (2), pp. 13271346.
    3. 3)
      • 3. ‘BusinessWire: ‘Retail Indoor Location Market Breaks US$10 Billion in 2020, Says ABI Research’, 2015.
    4. 4)
      • 4. Prince, G., Little, T.: ‘Two-phase framework for indoor positioning systems using visible light’, Sensors, 2018, 18, (6), p. 1917.
    5. 5)
      • 5. Liu, H., Yang, J., Sidhom, S., et al: ‘Accurate WiFi based localization for smartphones using peer assistance’, IEEE Trans. Mob. Comput., 2014, 13, (10), pp. 21992214.
    6. 6)
      • 6. Hou, R., Chen, Y., Wu, J., et al: ‘A brief survey of optical wireless communication’. 13th Australasian Symp. on Parallel and Distributed Computing (AusPDC 2015), Sydney, Australia, January 2015, vol. 163, pp. 4150.
    7. 7)
      • 7. Hassan, N.U., Naeem, A., Pasha, M.A., et al: ‘Indoor positioning using visible LED lights’, ACM Comput. Surv., 2015, 48, (2), pp. 132.
    8. 8)
      • 8. Wu, S., Wang, H., Youn, C.H.: ‘Visible light communications for 5G wireless networking systems: from fixed to mobile communications’, IEEE Netw., 2014, 28, pp. 4145.
    9. 9)
      • 9. Pathak, P.H., Feng, X., Hu, P., et al: ‘Visible light communication, networking, and sensing: a survey, potential and challenges’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 20472077.
    10. 10)
      • 10. Tsonev, D., Videv, S., Haas, H.: ‘Light fidelity (Li-Fi): towards all-optical networking’, in Dingel, B.B., Tsukamoto, K. (Ed.): ‘SPIE OPTO’ (International Society for Optics and Photonics, San Francisco, US, 2013), p. p 900702.
    11. 11)
      • 11. Chen, C., Basnayaka, D.A., Haas, H.: ‘Downlink performance of optical attocell networks’, J. Lightwave Technol., 2016, 34, (1), pp. 137156.
    12. 12)
      • 12. Pergoloni, S., Member, S., Biagi, M., et al: ‘Optimized LEDs footprinting for indoor visible light communication networks’, IEEE Photonics Technol. Lett., 2016, 28, (4), pp. 532535.
    13. 13)
      • 13. Pergoloni, S., Biagi, M., Colonnese, S., et al: ‘Coverage optimization of 5G atto-cells for visible light communications access’, 2015 IEEE Proc. Int. Workshop on Measurements and Networking, (M and N 2015), Coimbra, 2015, pp. 15.
    14. 14)
      • 14. Feng, L., Hu, R.Q., Wang, J., et al: ‘Applying VLC in 5G networks: architectures and key technologies’, IEEE Netw., 2016, 30, pp. 7783.
    15. 15)
      • 15. Agiwal, M., Roy, A., Saxena, N.: ‘Next generation 5G wireless networks: a comprehensive survey’, IEEE Commun. Surv. Tutor., 2016, 18, (3), pp. 16171655.
    16. 16)
      • 16. Do, T.H., Yoo, M.: ‘An in-depth survey of visible light communication based positioning systems’, Sensors, 2016, 16, (5), pp. 678.
    17. 17)
      • 17. Zhuang, Y., Hua, L., Qi, L., et al: ‘A survey of positioning systems using visible LED lights’, IEEE Commun. Surv. Tutor., 2018, 1, pp. 19631988.
    18. 18)
      • 18. Karunatilaka, D., Zafar, F., Kalavally, V., et al: ‘LED based indoor visible light communications: state of the art’, IEEE Commun. Surv. Tutor., 2015, 17, (3), pp. 16491678.
    19. 19)
      • 19. Yan, K., Zhou, H., Xiao, H., et al: ‘Current status of indoor positioning system based on visible light’. IEEE 2015 15th Int. Conf. on Control, Automation and Systems (ICCAS), Busan, South Korea, 2015, pp. 565569.
    20. 20)
      • 20. Armstrong, J., Sekercioglu, Y., Neild, A.: ‘Visible light positioning: a roadmap for international standardization’, IEEE Commun. Mag., 2013, 51, (12), pp. 6873.
    21. 21)
      • 21. Huynh, P., Yoo, M.: ‘VLC-based positioning system for an indoor environment using an image sensor and an accelerometer sensor.’, Sensors, 2016, 16, (6), pp. 783799.
    22. 22)
      • 22. Han, S.K., Yang, S.H., Son, Y.H., et al: ‘High-resolution indoor positioning using light emitting diode visible light and camera image sensor’, IET Optoelectron., 2016, 10, (5), pp. 184192.
    23. 23)
      • 23. Fu, M., Zhu, W., Le, Z., et al: ‘Improved visible light communication positioning algorithm based on image sensor tilting at room corners’, IET Commun., 2018, 12, (10), pp. 12011206.
    24. 24)
      • 24. Huang, X., Li, J., Chi, N., et al: ‘Experimental demonstration for high speed integrated visible light communication and multimode fiber communication system’, IET Optoelectron., 2015, 9, (5), pp. 207210.
    25. 25)
      • 25. Liu, Y., Yang, Z., Wang, X., et al: ‘Location, localization, and localizability: location-awareness technology for wireless networks’, vol. 25 (Springer, New York, USA, 2010).
    26. 26)
      • 26. Mautz, R.: ‘Indoor positioning technologies’ (ETH Zurich, Zurich, Switzerland, 2012).
    27. 27)
      • 27. Yuen, C., Pasha, M.A., Hassan, N.U., et al: ‘Highly accurate 3D wireless indoor positioning system using white LED lights’, Electron. Lett., 2014, 50, (11), pp. 828830.
    28. 28)
      • 28. Xiao, Q.: ‘Range-free and range-based localization of wireless sensor networks’ (The Hong Kong Polytechnic University, Hong Kong, China, 2011).
    29. 29)
      • 29. Mohammed, N.A., Elkarim, M.A.: ‘Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC’, Opt. Express, 2015, 23, (16), p. 20297.
    30. 30)
      • 30. Gu, W., Aminikashani, M., Deng, P., et al: ‘‘Impact of multipath reflections on the performance of indoor visible light positioning systems’’, J. Lightwave Technol., 2016, 34, (10), pp. 25782587.
    31. 31)
      • 31. Sun, X., Duan, J., Zou, Y., et al: ‘Impact of multipath effects on theoretical accuracy of TOA-based indoor VLC positioning system’, Photonics Res., 2015, 3, (6), pp. 296.
    32. 32)
      • 32. Shi, G., Li, Y., Xi, L., et al: ‘A robust method for indoor localization based on visible light communication’, 2016 2nd IEEE Int. Conf. on Computer and Communications (ICCC), Chengdu, China, 2016, pp. 21542158.
    33. 33)
      • 33. Doherty, L., Pister, K.S.J., El Ghaoui, L.: ‘Convex position estimation in wireless sensor networks’. Proc. IEEE INFOCOM 2001 Conf. on Computer Communications. Twentieth Annual Joint Conf. of the IEEE Computer and Communications Society (Cat. No. 01CH37213), Anchorage, USA, 2001, vol. 3, pp. 16551663.
    34. 34)
      • 34. Ayub, S., Honary, B., Kariyawasam, S., et al: ‘Visible light ID system for indoor localization’. 5th IET Int. Conf. on Wireless, Mobile and Multimedia Networks (ICWMMN 2013), Beijing, China, 2013, pp. 254257.
    35. 35)
      • 35. Krommenacker, N., Vasquez, O.C., Alfaro, M.D., et al: ‘A self-adaptive cell-ID positioning system based on visible light communications in underground mines’. 2016 IEEE Int. Conf. on Automatica (ICA-ACCA), Curico, Chile, 2016, pp. 17.
    36. 36)
      • 36. Gao, J., Yang, F., Ma, X.: ‘Indoor positioning system based on visible light communication with gray-coded identification’. 2017 13th Int. Wireless Communications and Mobile Computing Conf. (IWCMC), Valencia, Spain, 2017, pp. 899903.
    37. 37)
      • 37. Eltokhey, M.W., Mahmoud, K.R., Ghassemlooy, Z., et al: ‘Optimization of intensities and locations of diffuse spots in indoor optical wireless communications’, Opt. Commun., 2018, 410, pp. 17.
    38. 38)
      • 38. Liu, J.H., Li, Q., Zhang, X.Y.: ‘Cellular coverage optimization for indoor visible light communication and illumination networks’, J. Commun., 2014, 9, (11), pp. 891898.
    39. 39)
      • 39. Wong, D.W.K., Chen, G.C.K.: ‘Optimization of spot pattern in indoor diffuse optical wireless local area networks’, Opt. Express, 2005, 13, (8), pp. 317324.
    40. 40)
      • 40. Komine, T., Nakagawa, M.: ‘Fundamental analysis for visible-light communication system using LED lights’, IEEE Trans. Consum. Electron., 2004, 50, (1), pp. 100107.
    41. 41)
      • 41. Gfeller, F.R., Bapst, U.: ‘Wireless in-house data communication via diffuse infrared radiation’, Proc. IEEE, 1979, 67, (11), pp. 14741486.
    42. 42)
      • 42. Lomba, C.R., Valadas, R.T., de Oliveira Duarte, A.M.: ‘Efficient simulation of the impulse response of the indoor wireless optical channel’, Int. J. Commun. Syst., 2000, 13, (7-8), pp. 537549.
    43. 43)
      • 43. Li, H., Wang, J., Zhang, X., et al: ‘Indoor visible light positioning combined with ellipse-based ACO-OFDM’, IET Commun., 2018, 12, (17), pp. 21812187.
    44. 44)
      • 44. Pasha, M.A., Yuen, C., Hassan, N.U., et al: ‘Indoor positioning system designs using visible LED lights: performance comparison of TDM and FDM protocols’, Electron. Lett., 2015, 51, (1), pp. 7274.
    45. 45)
      • 45. Boyd, S.P., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, New York, USA, 2004).
    46. 46)
      • 46. Grant, M.C., Boyd, S.P.: ‘Graph implementations for nonsmooth convex programs’, in Blondel, V., Boyd, S., Kimura, H. (Eds.): ‘Recent advances in learning and control’ (Springer, London, 2008), pp. 95110.
    47. 47)
      • 47. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: ‘The quickhull algorithm for convex hulls’, ACM Trans. Math. Softw., 1996, 22, (4), pp. 469483.
    48. 48)
      • 48. Gui, L.: ‘Improvement of range-free localization systems in wireless sensor networks’ (University of Tolouse, Toulouse, France, 2013).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5623
Loading

Related content

content/journals/10.1049/iet-com.2018.5623
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address