access icon free SIMO subcarrier PSK FSO links with phase noise and non-zero boresight pointing errors over turbulence channels

Terrestrial free-space optical (FSO) communication systems with subcarrier intensity modulation have experienced a particular research attention in the recent past. However, their performance strongly degrades in the presence of atmospheric turbulence, pointing errors, and phase noise impairments. In order to overcome these limitations, the authors consider a receiver diversity scheme of a typical subcarrier phase-shift keying (PSK) system and investigate the performance by means of the average symbol error probability (ASEP). They assume a wide range of turbulence conditions, non-zero boresight pointing errors, and phase noise strengths described through the gamma-gamma, Beckmann, and Tikhonov distributions, respectively. Novel approximate ASEP expressions are derived for single-input single-output and single-input multiple-output (SIMO) configurations. Appropriate numerical results are depicted and validated by Monte Carlo simulations.

Inspec keywords: diversity reception; intensity modulation; optical links; error statistics; phase noise; Monte Carlo methods; optical modulation; phase shift keying; free-space optical communication; atmospheric turbulence

Other keywords: phase noise strengths; subcarrier intensity modulation; turbulence conditions; single-input single-output; subcarrier phase-shift keying system; novel approximate ASEP expressions; phase noise impairments; terrestrial free-space optical communication systems; average symbol error probability; turbulence channels; Monte Carlo simulations; nonzero boresight pointing errors; atmospheric turbulence; gamma-gamma distribution; Tikhonov distribution; single-input single-output configuration; SIMO subcarrier PSK FSO links; single-input multiple-output configuration; receiver diversity scheme; Beckmann distribution; pointing errors

Subjects: Monte Carlo methods; Modulation and coding methods; Free-space optical links

References

    1. 1)
      • 9. Nistazakis, H.E., Stassinakis, A.N., Muhammad, S.S., et al: ‘BER estimation for multi hop RoFSO QAM or PSK OFDM communication systems over Gamma Gamma or exponentially modeled turbulence channels’, Opt. Laser Technol., 2014, 64, pp. 106112.
    2. 2)
      • 19. Alouini, M.S., Simon, M.K.: ‘An MGF-based performance analysis of generalized selection combining over Rayleigh fading channels’, IEEE Trans. Commun., 2000, 48, (3), pp. 401415.
    3. 3)
      • 4. Petkovic, M., Djordjevic, G.T.: ‘SEP analysis of FSO system employing SIM-MPSK with noisy phase reference’. Proc. 4th Int. Workshop on Optical Wireless Communications (IWOW), Istanbul, Turkey, September 2015, pp. 4650.
    4. 4)
      • 16. ‘The Wolfram Functions Site’, 2008. Available at http://functions.wolfarm.com.
    5. 5)
      • 22. Gappmair, W.: ‘Further results on the capacity of free-space optical channels in turbulent atmosphere’, IET Commun., 2011, 5, (9), pp. 12621267.
    6. 6)
      • 2. Niu, M., Cheng, J., Holzman, J.F.: ‘Error rate analysis of M-ary coherent free-space optical communication systems with K-distributed turbulence’, IEEE Trans. Commun., 2011, 59, (3), pp. 664668.
    7. 7)
      • 5. Gappmair, W., Nistazakis, H.E.: ‘Subcarrier PSK performance in terrestrial FSO links impaired by Gamma-Gamma fading, pointing errors, and phase noise’, J. Lightwave Technol., 2017, 35, (9), pp. 16241632.
    8. 8)
      • 13. Adamchik, V.S., Marichev, O.I.: ‘The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system’. Proc. Int. Symp. Symbolic Algebraic Computation, Tokyo, Japan, August 1990, pp. 212224.
    9. 9)
      • 20. Sadhwani, D., Yadav, R.N., Aggrawal, S.: ‘Tighter bounds on the Gaussian Q function and its application in Nakagami-m fading channel’, IEEE Wirel. Commun. Lett., 2017, 6, (5), pp. 574577.
    10. 10)
      • 12. Farid, A.A., Hranilovic, S.: ‘Outage capacity optimization for free-space optical links with pointing errors’, J. Lightwave Technol., 2007, 25, (7), pp. 17021710.
    11. 11)
      • 8. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic, New York, NY, USA, 1965, 6th edn. 2008).
    12. 12)
      • 21. Proakis, J.G.: ‘Digital communications’ (McGraw-Hill, New York, NY, USA, 1989).
    13. 13)
      • 7. Al-Habash, A., Andrews, L.C., Phillips, R.L.: ‘Mathematical model for the irradiance probability density function of a laser beam propagating though turbulent media’, Opt. Eng., 2001, 40, (8), pp. 15541563.
    14. 14)
      • 24. Varotsos, G.K., Nistazakis, H.E., Petkovic, M.I, et al: ‘SIMO optical wireless links with nonzero boresight pointing errors over M-modeled turbulence channels’, Opt. Commun., 2017, 403, pp. 391400.
    15. 15)
      • 3. Djordjevic, G.T.: ‘Effect of phase noise on bit error rate performance of BPSK subcarrier intensity modulated wireless optical systems – simulation study’, Facta Univ. Ser., Autom. Control Robot., 2014, 12, (3), pp. 189195.
    16. 16)
      • 6. Tsiftsis, T.A, Sandalidis, H.G., Karagiannidis, G.K., et al: ‘Optical wireless links with spatial diversity over strong atmospheric turbulence channels’, IEEE Trans. Wirel. Commun., 2009, 8, (2), pp. 951957.
    17. 17)
      • 23. Ghassemlooy, Z., Tang, X., Rajbhandari, S.: ‘Experimental investigation of polarisation modulated free space optical communication with direct detection in a turbulence channel’, IET Commun., 2012, 6, (11), pp. 14891494.
    18. 18)
      • 18. Chiani, M., Dardari, D., Simon, M.K.: ‘New exponential bounds and approximations for the computation of error probability in fading channels’, IEEE Trans. Wirel. Commun., 2003, 2, (4), pp. 840845.
    19. 19)
      • 25. Boluda-Ruiz, R., Garcia-Zambrana, A., Castillo-Vazquez, B., et al: ‘Impact of nonzero boresight pointing error on ergodic capacity of MIMO FSO communication systems’, Opt. Express, 2016, 24, (4), pp. 35133534.
    20. 20)
      • 17. Navidpour, S.M, Uysal, M., Kavehrad, M.: ‘BER performance of free-space optical transmission with spatial diversity’, IEEE Trans. Wirel. Commun., 2007, 6, (8), pp. 28132819.
    21. 21)
      • 11. Abramovitz, M., Stegun, I.A.: ‘Handbook of mathematical functions with formulas, graphs, and mathematical tables’ (Dover, New York, USA, 1972).
    22. 22)
      • 10. Boluda-Ruiz, R., Garcia-Zambrana, A., Castillo-Vazquez, C., et al: ‘Novel approximation of misalignment fading modeled by Beckmann distribution on free-space optical links’, Opt. Express, 2016, 24, (20), pp. 2263522649.
    23. 23)
      • 26. Varotsos, G.K., Nistazakis, H.E., Tombras, G.S.: ‘OFDM RoFSO links with relays over turbulence channels and nonzero boresight pointing errors’, J. Commun., 2017, 12, (12), pp. 644660.
    24. 24)
      • 15. Al-Quwaiee, H., Yang, H.C., Alouini, M.S.: ‘On the asymptotic capacity of dual-aperture FSO systems with a generalized pointing error model’, IEEE Trans. Wirel. Commun., 2016, 15, (9), pp. 65026512.
    25. 25)
      • 14. Simon, M.K., Alouini, M.S.: ‘Digital communication over fading channels: a unified approach to performance analysis’ (Wiley, New York, USA, 2000).
    26. 26)
      • 1. Song, X., Yang, F., Cheng, J., et al: ‘Subcarrier phase-shift keying systems with phase errors in lognormal turbulence channels’, J. Lightwave Technol., 2015, 33, (9), pp. 18961904.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5608
Loading

Related content

content/journals/10.1049/iet-com.2018.5608
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading