Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimising the inter-distance between transmitters in a multi-cell VLC system

In this study, the authors find the optimum inter-distance between visible light access points (VAPs) in a multi-cell system. This is an important issue to avoid the lack of resources resulting from wiring too few VAPs while minimising the installation cost. This study uses a one-dimensional corridor model suitable for many practical environments such as train aisles and hospital/library corridors. They provide formulas for the average rate achieved per user to determine the optimal inter-VAP distance. These formulas depend on information that is usually available in the design step such as the corridor dimensions, luminaries' parameters, and user density. They consider different power allocation techniques and different frequency reuse factors. The analysis shows that the optimum inter-VAP distance depends mainly on the corridor dimensions and not as much on the communication technique. Higher frequency reuse factors reduce the interference and improve the performance in the case of small cells. Specifically, the results determine the corridor dimensions that are better served by multi-VAP rather than a single centred VAP. Many important design issues are answered throughout this study such as how the ceiling height and the estimated crowdedness in the corridor affect the optimum cell size.

References

    1. 1)
      • 10. Haas, H., Chen, C., O'Brien, D.: ‘A guide to wireless networking by light’, Prog. Quantum Electron., 2017, 55, pp. 88111.
    2. 2)
      • 7. Haas, H.: ‘Lifi is a paradigm-shifting 5G technology’, Rev. Phys., 2018, 3, pp. 2631.
    3. 3)
      • 20. Zeng, L., O'Brien, D. C., Minh, H. L., et al: ‘High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting’, IEEE J. Sel. Areas Commun., 2009, 27, (9), pp. 16541662.
    4. 4)
      • 26. Datasheet: Lcw w5sm golden dragon white led'. Available at https://www.osram.com, accessed October 2018.
    5. 5)
      • 3. Dimitrov, S., Haas, H.: ‘Principles of LED light communications: towards networked Li-Fi’ (Cambridge University Press, Cambridge, 2015, 1st edn.).
    6. 6)
      • 9. Khan, L.U.: ‘Visible light communication: applications, architecture, standardization and research challenges’, Digital Commun. Netw., 2017, 3, (2), pp. 7888.
    7. 7)
      • 19. Barry, J.R., Kahn, J.M., Krause, W.J., et al: ‘Simulation of multipath impulse response for indoor wireless optical channels’, IEEE J. Sel. Areas Commun., 1993, 11, (3), pp. 367379.
    8. 8)
      • 12. Liu, H., Wang, X., Chen, Y., et al: ‘Optimization lighting layout based on gene density improved genetic algorithm for indoor visible light communications’, Opt. Commun., 2017, 390, pp. 7681.
    9. 9)
      • 6. Zvanovec, S., Chvojka, P., Haigh, P.A., et al: ‘Visible light communications towards 5G’, Radioengineering, 2015, 24, (1), pp. 19.
    10. 10)
      • 17. Tabassum, H., Hossain, E.: ‘Coverage and rate analysis for co-existing RF/VLC downlink cellular networks’, IEEE Trans. Wirel. Commun., 2018, 17, (4), pp. 25882601.
    11. 11)
      • 1. Pathak, P., Feng, X., Hu, P., et al: ‘Visible light communication, networking, and sensing: A survey, potential and challenges’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 20472077.
    12. 12)
      • 4. Serafimovski, N., Tsonev, D., Nufaii, A.S., et al: ‘Light communications (LC) for 802.11: use cases and functional requirements: guidelines for PAR and CSD development’ (IEEE P802.11-light communications (LC) study group (SG), 2017), pp. 1–16.
    13. 13)
      • 22. Kashef, M., Ismail, M., Abdallah, M., et al: ‘Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 883893.
    14. 14)
      • 24. Hamdi, K.A.: ‘A useful lemma for capacity analysis of fading interference channels’, IEEE Trans. Commun., 2010, 58, (2), pp. 411416.
    15. 15)
      • 14. Stefan, I., Haas, H.: ‘Analysis of optimal placement of LED arrays for visible light communication’. Proc. Vehicular Technology Conf., Dresden, Germany, June 2013, pp. 15.
    16. 16)
      • 18. Yin, L., Popoola, W., Wu, X., et al: ‘Performance evaluation of non-orthogonal multiple access in visible light communication’, IEEE Trans. Commun., 2016, 64, (12), pp. 51625175.
    17. 17)
      • 21. Stefan, I., Burchardt, H., Haas, H.: ‘Area spectral efficiency performance comparison between VLC and RF femtocell networks’. Proc. Int. Conf. Communication, Budapest, Hungary, June 2013, pp. 38253829.
    18. 18)
      • 2. Cole, M., Driscoll, T.: ‘The lighting revolution: if we were experts before, we're novices now’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 15091520.
    19. 19)
      • 13. Pergoloni, S., Biagi, M., Colonnese, S., et al: ‘Optimized LEDs footprinting for indoor visible light communication networks’, IEEE Photonics Technol. Lett., 2016, 28, (4), pp. 532535.
    20. 20)
      • 5. Wu, S., Wang, H., Youn, C.: ‘Visible light communications for 5G wireless networking systems: from fixed to mobile communications’, IEEE Netw., 2014, 28, (6), pp. 4145.
    21. 21)
      • 23. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, 2004, 1st edn.).
    22. 22)
      • 15. Chen, C., Ijaz, M., Tsonev, D., et al: ‘Analysis of downlink transmission in DCO-OFDM-based optical attocell networks’. Proc. Global Communications Conf., Texas, USA, December 2014, pp. 20722077.
    23. 23)
      • 16. Chen, C., Basnayaka, D.A., Haas, H.: ‘Downlink performance of optical attocell networks’, J. Lightwave Technol., 2016, 34, (1), pp. 137156.
    24. 24)
      • 8. Ergul, O., Dinc, E., Akan, O.: ‘Communicate to illuminate: state-of-the-art and research challenges for visible light communications’, Phys. Commun., 2015, 17, pp. 7285.
    25. 25)
      • 11. Wang, Z., Zhong, W.D., Yu, C., et al: ‘A novel LED arrangement to reduce SNR fluctuation for multi-user in visible light communication systems’. Proc. Int. Conf. Information, Communications and Signal Processing, Singapore, Singapore, December 2011, pp. 14.
    26. 26)
      • 25. Shahbaz, M.Q., Ahsanullah, M., Shahbaz, S.H., et al: ‘Ordered random variables: theory and application’ (Atlantis Press, Paris, 2016, 1st edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5597
Loading

Related content

content/journals/10.1049/iet-com.2018.5597
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address