Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Higher order statistics for modulation and STBC recognition in MIMO systems

Identification of modulation and space-time block code (STBC) is an important task of receivers in applications such as military, civilian, and commercial communications. Here, we consider multiple-input multiple-output (MIMO) systems. We propose two methods for STBC identification when the modulation is known. We also introduce a method for joint identification of code and modulation. Additionally, we present an enhanced zero-forcing (ZF) equaliser to improve the separation between the features of different classes. Higher order cumulants are used as the statistical features. In the first method of STBC identification, after the proposed equalisation, received data samples are segmented, and then using the mean and Frobenius norm of the covariance matrix of extracted cumulants as threshold values, the STBCs are detected. This method requires the knowledge of the threshold values for each modulation type and noise power. In the second method, the knowledge of noise power and the type of modulation are not needed. After the proposed ZF equalisation, feature vector based on the cumulants is calculated, and then support vector machine (SVM) classifier is used to classify different STBCs. In the third method, joint detection of STBC and modulation type is performed using the proposed ZF equaliser and mapping the received samples. This method deals with the theoretical values calculated from the cumulants of four STBCs and four modulations, where there is no need to know the noise power. The results indicate that the proposed methods perform well even at low signal-to-noise ratios (SNRs).

References

    1. 1)
      • 38. Bayer, Ö., Öner, M.: ‘Joint space time block code and modulation classification for MIMO systems’, IEEE Wirel. Commun. Lett., 2016, 6, (1), pp. 6265.
    2. 2)
      • 26. Choqueuse, V., Yao, K., Collin, L., et al: ‘Blind recognition of linear space time block codes’. 2008 IEEE Int.Conf. on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 2008, pp. 28332836.
    3. 3)
      • 36. Karami, E., Dobre, O.A.: ‘Identification of SM-OFDM and AL-OFDM signals based on their second-order cyclostationarity’, IEEE Trans. Veh. Technol., 2015, 64, (3), pp. 942953.
    4. 4)
      • 9. Wu, H.-C., Saquib, M., Yun, Z.: ‘Novel automatic modulation classification using cumulant features for communications via multipath channels’, IEEE Trans. Wirel. Commun., 2008, 7, (8), pp. 30983105.
    5. 5)
      • 4. Cabric, D., Mishra, S.M., Brodersen, R.W.: ‘Implementation issues in spectrum sensing for cognitive radios’. 2004 Conf. record of the thirty-eighth AsilomarConf. on Signals, Systems and Computers, Pacific Grove, CA, USA, USA, 2004, vol. 1, pp. 772776.
    6. 6)
      • 10. Dobre, O.A., Abdi, A., Bar-Ness, Y., et al: ‘Survey of automatic modulation classification techniques: classical approaches and new trends’, IET Commun., 2007, 1, (2), pp. 137156.
    7. 7)
      • 30. Eldemerdash, Y.A., Marey, M., Dobre, O.A., et al: ‘Blind identification of SM and alamouti STBC signals based on fourth-order statistics’. 2013 IEEE Int.Conf. on Communications (ICC), Budapest, Hungary, 2013, pp. 46664670.
    8. 8)
      • 41. Mühlhaus, M.S., Öner, M., Dobre, O.A., et al: ‘Automatic modulation classification for MIMO systems using fourth-order cumulants’. 2012 IEEE Vehicular Technology Conf. (VTC Fall), Quebec City, 2012, pp. 15.
    9. 9)
      • 7. Zeng, Y., Liang, Y.-C., Hoang, A.T., et al: ‘A review on spectrum sensing for cognitive radio: challenges and solutions’, EURASIP J. Adv. Signal Process., 2010, 2010, (1), p.13.
    10. 10)
      • 40. Ciblat, P., Loubaton, P., Serpedin, E., et al: ‘Asymptotic analysis of blind cyclic correlation-based symbol-rate estimators’, IEEE Trans. Inf. Theory, 2002, 48, (7), pp. 19221934.
    11. 11)
      • 43. Ling, Q., Zhang, L., Yan, W., et al: ‘Hierarchical space–time block codes signals classification using higher order cumulants’, Chin. J. Aeronaut., 2016, 29, (3), 2016, pp. 754762.
    12. 12)
      • 19. Choqueuse, V., Azou, S., Yao, K., et al: ‘Blind modulation recognition for MIMO systems’, J. Mil. Tech. Acad. Rev., 2009, 19, (2), pp. 183196.
    13. 13)
      • 25. Marey, M., Dobre, O.A., Liao, B.: ‘Classification of STBC systems over frequency-selective channels’, IEEE Trans. Veh. Technol., 2015, 64, (5), pp. 21592164.
    14. 14)
      • 31. Mohammadkarimi, M., Dobre, O.A.: ‘Blind identification of spatial multiplexing and Alamouti space-time block code via Kolmogorov–Smirnov (KS) test’, IEEE Commun. Lett., 2014, 18, (10), pp. 17111714.
    15. 15)
      • 33. Eldemerdash, Y.A., Dobre, O.A., Liao, B.J.: ‘Blind identification of SM and Alamouti STBC-OFDM signals’, IEEE Trans. Wirel. Commun., 2015, 14, (2), pp. 972982.
    16. 16)
      • 45. Kalbkhani, H., Shayesteh, M.G., Zali-Vargahan, B.: ‘Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series’, Biomed. Signal Proc. Control, 2013, 8, (6), pp. 909919.
    17. 17)
      • 28. Marey, M., Dobre, O., Inkol, R.: ‘Cyclostationarity-based blind classification of STBCs for cognitive radio systems’. 2012 IEEE Int.Conf. on Communications (ICC), Ottowa Canada, 2012, pp. 17151720.
    18. 18)
      • 35. Eldemerdash, Y.A., Dobre, O.A., Marey, M., et al: ‘An efficient algorithm for space-time block code classification’. 2013 IEEE Global Communications Conf. (GLOBECOM), Atlanta, USA, 2013, pp. 33293334.
    19. 19)
      • 24. Marey, M., Dobre, O.A., Inkol, R.: ‘Classification of space-time block codes based on second-order cyclostationarity with transmission impairments’, IEEE Trans. Wirel. Commun., 2012, 11, (7), pp. 25742584.
    20. 20)
      • 14. Chavali, V.G., da Silva, C.R.M.: ‘Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-Gaussian channels’, IEEE Trans. Commun., 2011, 59, (8), pp. 20512056.
    21. 21)
      • 18. Shi, M., Bar-Ness, Y., Su, W.: ‘Adaptive estimation of the number of transmit antennas’. IEEE Military Communications Conf. (MILCOM 2007), Orlando, FL, USA, USA, 2007, pp. 15.
    22. 22)
      • 17. Somekh, O., Simeone, O., Bar-Ness, Y., et al: ‘Detecting the number of transmit antennas with unauthorized or cognitive receivers in MIMO systems’. IEEE MILCOM 2007-IEEE Military Communications Conf., Orlando, FL, USA, USA, 2007, pp. 15.
    23. 23)
      • 5. Axell, E., Leus, G., Larsson, E.G., et al: ‘Spectrum sensing for cognitive radio: state-of-the-art and recent advances’, IEEE Signal Process. Mag., 2012, 29, (3), pp. 101116.
    24. 24)
      • 11. Swami, A., Sadler, B.M.: ‘Hierarchical digital modulation classification using cumulants’, IEEE Trans. Commun., 2000, 48, (3), pp. 416429.
    25. 25)
      • 29. Eldemerdash, Y.A., Marey, M., Dobre, O.A., et al: ‘Fourth-order statistics for blind classification of spatial multiplexing and Alamouti space-time block code signals’, IEEE Trans. Commun., 2013, 61, (6), pp. 24202431.
    26. 26)
      • 13. Hameed, F., Dobre, O.A., Popescu, D.C.: ‘On the likelihood-based approach to modulation classification’, IEEE Trans. Wirel. Commun., 2009, 8, (12), pp. 58845892.
    27. 27)
      • 32. Marey, M., Dobre, O.A., Inkol, R.: ‘Blind STBC identification for multiple-antenna OFDM systems’, IEEE Trans. Commun., 2014, 62, (5), pp. 15541567.
    28. 28)
      • 16. Dobre, O.A., Venkatesan, R., Popescu, D.C.: ‘Second-order cyclostationarity of mobile WiMAX and LTE OFDM signals and application to spectrum awareness in cognitive radio systems’, IEEE. J. Sel. Top. Signal. Process., 2012, 6, (1), pp. 2642.
    29. 29)
      • 3. Wang, B., Liu, K.J.R.: ‘Advances in cognitive radio networks: a survey’, IEEE. J. Sel. Top. Signal. Process., 2011, 5, (1), pp. 523.
    30. 30)
      • 34. Choqueuse, V., Mansour, A., Burel, G., et al: ‘Blind channel estimation for STBC systems using higher-order statistics’, IEEE Trans. Wirel. Commun., 2011, 10, (2), pp. 495505.
    31. 31)
      • 23. Shi, M., Bar-Ness, Y., Su, W.: ‘STC and BLAST MIMO modulation recognition’. IEEE Global Telecommunications Conf. (GLOBECOM 2007), Washington, DC, 2007, pp. 30343039.
    32. 32)
      • 2. Cabric, D.B.: ‘Cognitive radios: system design perspective’ (ProQuest, Berkeley, California, USA, 2007).
    33. 33)
      • 21. Choqueuse, V., Marazin, M., Collin, L., et al: ‘Blind recognition of linear space–time block codes: a likelihood-based approach’, IEEE Trans. Signal Process., 2010, 58, (3), pp. 12901299.
    34. 34)
      • 37. De Young, M.R., Heath, R.W.Jr., Evans, B.L.: ‘Using higher order cyclostationarity to identify space-time block codes’. IEEE Global Telecommunications Conf. (GLOBECOM 2008–2008), New Orleans, Louisiana, 2008, pp. 15.
    35. 35)
      • 42. Muhlhaus, M.S., Oner, M., Dobre, O.A., et al: ‘A low complexity modulation classification algorithm for MIMO systems’, IEEE Commun. Lett., 2013, 17, (10), pp. 18811884.
    36. 36)
      • 22. Choqueuse, V., Yao, K., Collin, L., et al: ‘Hierarchical space-time block code recognition using correlation matrices’, IEEE Trans. Wirel. Commun., 2008, 7, (9), pp. 35263534.
    37. 37)
      • 44. Mühlhaus, M.S., Öner, M., Dobre, O.A., et al: ‘A novel algorithm for MIMO signal classification using higher-order cumulants’. 2013 IEEE Radio and Wireless Symp., Austin, Texas,2013, pp. 79.
    38. 38)
      • 1. Mac Kenzie, A.B., Reed, J.H., Athanas, P., et al: ‘Cognitive radio and networking research at VirginiaTech’, Proc. IEEE, 2009, 97, (4), pp. 660688.
    39. 39)
      • 39. Wu, Y.-C., Chan, S.-C.: ‘On the symbol timing recovery in space-time coding systems’. 2003 IEEE Wireless Communications and Networking (WCNC 2003), New Orleans, Louisiana, 2003, vol. 1, pp. 420424.
    40. 40)
      • 15. Headley, W.C., da Silva, C.R.M.: ‘Asynchronous classification of digital amplitude-phase modulated signals in flat-fading channels’, IEEE Trans. Commun., 2011, 59, (1), pp. 712.
    41. 41)
      • 6. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutorials, 2009, 11, (1), pp. 116130.
    42. 42)
      • 20. Hassan, K., Dayoub, I., Hamouda, W., et al: ‘Blind digital modulation identification for spatially-correlated MIMO systems’, IEEE Trans. Wirel. Commun., 2012, 11, (2), pp. 683693.
    43. 43)
      • 8. Eldemerdash, Y.A., Dobre, O.A., Öner, M.: ‘Signal identification for multiple-antenna wireless systems: achievements and challenges’, IEEE Commun. Surv. Tutorials, 2016, 18, (3), pp. 15241551.
    44. 44)
      • 46. Burges, C.J.: ‘A tutorial on support vector machines for pattern recognition’, Data Min. Knowl. Discov., 1998, 2, (2), pp. 121167.
    45. 45)
      • 27. Luo, M., Gan, L., Li, L.: ‘Blind recognition of space-time block code using correlation matrices in a high dimensional feature space’, J. Inf. Comput. Sci., 2012, 9, pp. 14691491.
    46. 46)
      • 12. Punchihewa, A., Zhang, Q., Dobre, O.A., et al: ‘On the cyclostationarity of OFDM and single carrier linearly digitally modulated signals in time dispersive channels: theoretical developments and application’, IEEE Trans. Wirel. Commun., 2010, 9, (8), pp. 25882599.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5497
Loading

Related content

content/journals/10.1049/iet-com.2018.5497
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address