http://iet.metastore.ingenta.com
1887

Performance comparison of two novel relay-assisted hybrid FSO/RF communication systems

Performance comparison of two novel relay-assisted hybrid FSO/RF communication systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, two novel multi-hop relay-assisted hybrid FSO/RF communication systems are presented and compared. In these structures, RF and FSO links, at each hop, are parallel and send data simultaneously. This is the first time that in a multi-hop hybrid FSO/RF structure, detect and forward protocol is used. In the first structure, at each hop, received signals with a higher signal-to-noise ratio are selected. However, in the second structure, at each hop, received FSO and RF signals are separately detected and forwarded and selection is done only at the last hop. Considering FSO link in negative exponential atmospheric turbulence and RF link in Rayleigh fading, for the first time, closed-form expressions are derived for outage probability () and bit error rate of the proposed structures. MATLAB simulations are provided to verify derived expressions. Results indicate that the structure with the selection at each hop has better performance than the structure with a selection at the last hop.

References

    1. 1)
      • 1. Jamali, V., Michalopoulos, D. S., Uysal, M., et al: ‘Resource allocation for mixed RF and hybrid RF/ FSO relay’, 2015.
    2. 2)
      • 2. Lopez-Martinez, F. J., Gomez, G., Garrido-Balsells, J. M.: ‘Physical-Layer security in free space optical communications’, IEEE Photonics J., 2015, 7, pp. 114.
    3. 3)
      • 3. Kaushal, H., Jain, V.K., Ka, S.: ‘Free space optical communication’ (Springer, India, 2017), p. 60.
    4. 4)
      • 4. Amirabadi, M. A., Vakili, V. T.: ‘On the performance of a relay-assisted multi-hop asymmetric FSO/RF communication system over negative exponential atmospheric turbulence with the effect of pointing error’. arXiv preprint arXiv:1808.10277, 2018.
    5. 5)
      • 5. Mai, V. V., Pham, A. T.: ‘Designs for multi-rate hybrid adaptive FSO/RF systems over fading channel’. Globecom Workshops, Austin, TX, USA, 2014.
    6. 6)
      • 6. Zhang, J., Dai, L., Zhang, Y., et al: ‘Unified performance analysis of mixed radio frequency/free-space optical dual-hop transmission systems’, J. Lightwave Technol., 2015, 33, pp. 22862293.
    7. 7)
      • 7. Jing, Z., Shang-hong, Z., Wei-hu, Z., et al: ‘Performance analysis for mixed FSO/RF Nakagami-m and exponentiated Weibull dual-hop airborne systems’, Opt. Commun., 2017, 392, pp. 294299.
    8. 8)
      • 8. Kumar, K., Borah, D. K.: ‘Hybrid FSO/RF symbol mappings: merging high speed FSO with low speed RF through BICM-ID’. IEEE Global Communications Conf., Anaheim, CA, USA, 2012.
    9. 9)
      • 9. Abdulhussein, A., Oka, A., Nguyen, T. T., et al: ‘Rateless coding for hybrid free-space optical and radio-frequency communication’, IEEE Trans. Wirel. Commun., 2010, 9, pp. 907913.
    10. 10)
      • 10. Rakia, T., Yang, H.C., Gebali, F., et al: ‘Power adaptation based on truncated channel inversion for hybrid FSO/RF transmission with adaptive combining’, IEEE Photonics J., 2015, 7, pp. 112.
    11. 11)
      • 11. Rakia, T., Yang, H. C., Alouini, M. S., et al: ‘Outage analysis of practical FSO/RF hybrid system With adaptive combining’, IEEE Commun. Lett., 2015, 19, pp. 13661369.
    12. 12)
      • 12. Mai, V. V., Pham, A. T.: ‘Adaptive multi-rate designs and analysis for hybrid FSO/RF systems over fading channel’, IEICE Trans. Commun., 2015, e98-B, pp. 16601671.
    13. 13)
      • 13. Zedini, E., Soury, H., Alouini, M. S.: ‘Dual-hop FSO transmission systems over gamma–gamma turbulence with pointing errors’, IEEE Trans. Wirel. Commun., 2017, 16, pp. 784796.
    14. 14)
      • 14. Kumar, N., Bhatia, V.: ‘Performance analysis of amplify-and-forward cooperative networks with best-relay selection over Weibull channels fading’, Wirel. Pers. Commun., 2015, 85, pp. 641653.
    15. 15)
      • 15. Zedini, E., Soury, H., Alouini, M. S.: ‘On the analysis of dual-hop mixed performance FSO/RF system’, IEEE Trans. Wirel. Commun., 2016, 15, pp. 36793689.
    16. 16)
      • 16. Djordjevic, G., Petkovic, M., Cvetkovic, A., et al: ‘Mixed RF/FSO relaying with outdated channel state information’, IEEE J. Sel. Areas Commun., 2015, PP, pp. 19351948.
    17. 17)
      • 17. Varshney, N., Puri, P.: ‘Performance analysis of decode-and-forward MIMO-based mixed RF/ FSO source mobility and cooperative systems with imperfect CSI’, J. Lightwave Technol., 2017, 35, pp. 20702077.
    18. 18)
      • 18. Saidi, H., Tourki, K., Hamdi, N.: ‘Performance analysis of PSK modulation in DF dual-hop hybrid RF/FSO system over gamma–gamma channel’. Int. Symp. on Signal, Image, Video and Communications (ISIVC), Tunis, Tunisia, 2016.
    19. 19)
      • 19. Khan, M. N., Jamil, M.: ‘Adaptive hybrid free space optical/radio frequency communication system’, Telecommun. Syst., 2017, 65, (1), pp. 117126.
    20. 20)
      • 20. Chen, L., Wang, W., Zhang, C.: ‘Multiuser diversity over parallel and hybrid FSO/RF links and its performance analysis’, IEEE Photonics J., 2016, 8, pp. 19.
    21. 21)
      • 21. Amirabadi, M. A., Vakili, V. T.: ‘A novel hybrid FSO/RF communication system with receive diversity’. arXiv preprint arXiv:1802.07348, 2018.
    22. 22)
      • 22. Trinh, P. V., Thang, T. C., Pham, A. T.: ‘Mixed mmWave RF/FSO relaying systems over generalized fading channels with pointing errors’, IEEE Photonics J., 2017, 9, (1), pp. 114.
    23. 23)
      • 23. Varshney, N., Puri, P.: ‘Performance analysis of decode-and-forward-based mixed MIMO-RF/FSO cooperative systems with source mobility and imperfect CSI’, J. Lightwave Technol., 2017, 35, (11), pp. 20702077.
    24. 24)
      • 24. Anees, S., Bhatnagar, M.: ‘Performance of an amplify-and-forward dual-hop asymmetric RF–FSO communication system’, IEEE/OSA J. Opt. Commun. Networking, 2015, 7, pp. 124135.
    25. 25)
      • 25. Amirabadi, M. A., Vakili, V. T.: ‘Performance analysis of a novel hybrid FSO/RF communication system’.‏arXiv preprint arXiv:1802.07160, 2018.
    26. 26)
      • 26. Amirabadi, M. A., Vakili, V. T.: ‘Performance analysis of hybrid FSO/RF communication systems with Alamouti coding or antenna selection’. arXiv preprint arXiv:1802.07286, 2018.
    27. 27)
      • 27. Amirabadi, M. A., Vakili, V. T.: ‘On the performance of a CSI assisted dual-Hop asymmetric FSO/RF communication system over gamma-gamma atmospheric turbulence considering the effect of pointing error’. Int. Congress on Science and Engineering, Hamburg, Germany, 2018.
    28. 28)
      • 28. Bag, B., Das, A., Ansari, I. S., et al: ‘Performance analysis of hybrid FSO systems using FSO/RF-FSO link adaptation’, IEEE Photonics J., 2018, 10, (3), pp. 117.
    29. 29)
      • 29. Bag, B., Das, A., Chandra, A., et al: ‘Capacity analysis for Rayleigh/gamma-gamma mixed RF/FSO link with fixed-gain AF relay’, IEICE Trans. Commun., 2017, 100, (10), pp. 17471757.
    30. 30)
      • 30. Tsiftsis, T. A., Sandalidis, H. G., Karagiannidis, G. K., et al: ‘Multihop free-space optical communications over strong turbulence channels’. IEEE Int. Conf. on Communications, 2006 (ICC'06), Istanbul, Turkey, 2006, pp. 27552759.
    31. 31)
      • 31. Wang, P., Cao, T., Guo, L., et al: ‘Performance analysis of multihop parallel free-space optical systems over exponentiated Weibull fading channels’, IEEE Photonics J., 2015, 7, (1), pp. 117.
    32. 32)
      • 32. Kashani, M. A., Uysal, M.: ‘Outage performance of FSO multi-hop parallel relaying’. 2012 20th IEEE Signal Processing and Communications Applications Conf. (SIU), Mugla, Turkey, 2012, pp. 14.
    33. 33)
      • 33. Kashani, M. A., Uysal, M.: ‘Outage performance and diversity gain analysis of free-space optical multi-hop parallel relaying’, J. Opt. Commun. Netw., 2013, 5, (8), pp. 901909.
    34. 34)
      • 34. Farhadi, G., Beaulieu, N. C.: ‘Capacity of amplify-and-forward multi-hop relaying systems under adaptive transmission’, IEEE Trans. Commun., 2010, 58, (3), pp. 758763.
    35. 35)
      • 35. Makki, B., Svensson, T., Brandt-Pearce, M., et al: ‘Performance analysis of RF FSO multi-hop networks’. IEEE Wireless Communications and Networking Conf., San Francisco, CA, USA, 2017.
    36. 36)
      • 36. Kazemi, H., Uysal, M., Touati, F., et al: ‘Outage performance of multi-hop hybrid FSO/RF communication systems’. 4th Int. Workshop on Optical Wireless Communications, Istanbul, Turkey, 2015.
    37. 37)
      • 37. Papoulis, A., Pillai, S. U.: ‘Probability, random variables, and stochastic presses’ (McGraw-Hill, New York, USA, 2002, 4th edn.), p. 132.
    38. 38)
      • 38. Kong, L., Xu, W., Hanzo, L., et al: ‘Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels’, IEEE Photon. J., 2015, 7.
    39. 39)
      • 39. Wolfram, The Wolfram functions site, http://functions.wolfram.com./HypergeometricFunctions/MeijerG/, Accessed 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5469
Loading

Related content

content/journals/10.1049/iet-com.2018.5469
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address