access icon free Energy-efficient power allocation in underlay and overlay cognitive device-to-device communications

Device-to-device (D2D) communication can effectively use cognitive radio network approach to coexist with cellular users. For such a cognitive D2D system, two approaches (underlay and overlay) are considered to manage the spectrum sharing among the cellular (primary) users and the D2D (secondary) users. Energy efficiency (EE) is crucial in both these cases due to limited battery capacity and quality of service requirements of the D2D users. This study effectively models the power allocation problem of such a cognitive D2D system by maximising the EE of the D2D users subject to a minimum rate requirement for both the D2D users and the cellular users. This leads to a non-linear fractional optimisation problem which is more complicated and computationally intractable. Alternatively, geometric water-filling approach have been utilised for power allocation to solve this optimisation problem which results in an ‘exact’ and ‘low complexity’ solution. Simulation results reveal the benefits of the proposed algorithm.

Inspec keywords: telecommunication power management; energy conservation; cellular radio; radio spectrum management; cognitive radio; optimisation; radio networks

Other keywords: minimum rate requirement; nonlinear fractional optimisation problem; cognitive D2D system; geometric water-filling approach; energy-efficient power allocation; power allocation problem; energy efficiency; cellular users; device-to-device communications; D2D users; cognitive radio network

Subjects: Optimisation techniques; Telecommunication systems (energy utilisation); Mobile radio systems

References

    1. 1)
      • 8. Sultana, A., Zhao, L., Fernando, X.: ‘Efficient resource allocation in device-to-device communication using cognitive radio technology’, IEEE Trans. Veh. Technol., 2017, 66, (11), pp. 1002410034.
    2. 2)
      • 32. Goldsmith, A., Jafar, S.A., Maric, I., et al: ‘Breaking spectrum gridlock with cognitive radios: an information theoretic perspective’, Proc. IEEE, 2009, 97, (5), pp. 894914.
    3. 3)
      • 26. Liu, J., Kato, N., Ma, J., et al: ‘Optimal power control for energy efficient D2D communication and its distributed implementation’, IEEE Commun. Lett., 2015, 19, (5), pp. 815818.
    4. 4)
      • 30. Wang, L., Jin, H., Ji, X., et al: ‘Power allocation optimization for D2D communication underlaying cognitive full duplex relay networks’. Proc. IEEE Conf. on Wireless Communications, Networking and Mobile Computing (WiCOM), Shanghai, China, 2016, pp. 16.
    5. 5)
      • 38. Blasco-Serrano, R., Lv, J., Thobaben, R., et al: ‘Multi-antenna transmission for underlay and overlay cognitive radio with explicit message learning phase’, J. Wireless Commun. Netw., 2013, 2013, p. 195, https://doi.org/10.1186/1687-1499-2013-195.
    6. 6)
      • 28. Sakr, A.H., Hossain, E.: ‘Cognitive and energy harvesting-based D2D communication in cellular networks: stochastic geometry modeling and analysis’, IEEE Trans. Commun., 2015, 63, (5), pp. 18671880.
    7. 7)
      • 21. Penda, D.D., Fu, L., Johansson, M.: ‘Energy efficient D2D communications in dynamic TDD systems’, IEEE Trans. Commun., 2017, 65, (3), pp. 12601273.
    8. 8)
      • 18. Wang, S., Shi, W., Wang, C.: ‘Energy-efficient resource management in OFDM-based cognitive radio networks under channel uncertainty’, IEEE Trans. Commun, 2015, 63, (9), pp. 30923102.
    9. 9)
      • 40. Berger, S., Kuhn, M., Wittneben, A., et al: ‘Recent advances in amplify-and-forward two-hop relaying’, IEEE Commun. Mag., 2009, 47, (7), pp. 5056.
    10. 10)
      • 42. Dinkelbach, W.: ‘On nonlinear fractional programming’, Manage. Sci., 1967, 13, (7), pp. 492498.
    11. 11)
      • 3. Zappone, A., Matthiesen, B., Jorswieck, E.A.: ‘Energy efficiency in MIMO underlay and overlay device-to-device communications and cognitive radio systems’, IEEE Trans. Signal Process., 2017, 65, (4), pp. 10261041.
    12. 12)
      • 20. Liu, J., Zhang, S., Kato, N., et al: ‘Device-to-device communications for enhancing quality of experience in software defined multi-tier LTE-A networks’, IEEE Netw., 2015, 29, (4), pp. 4652.
    13. 13)
      • 41. Iwamura, M., Takahashi, H., Nagata, S.: ‘Relay technology in LTE advanced’, NTT DOCOMO Technol. J., 2010, 18, (2), pp. 3136.
    14. 14)
      • 24. Wei, L., Hu, R.Q., Qian, Y., et al: ‘Energy-efficiency and spectrum efficiency of multihop device-to-device communications underlaying cellular networks’, IEEE Trans. Veh. Technol., 2016, 65, (1), pp. 367380.
    15. 15)
      • 15. Alsharoa, A., Ghazzai, H., Yaacoub, E., et al: ‘Bandwidth and power allocation for two-way relaying in overlay cognitive radio systems’. IEEE Global Communications Conf. (GLOBECOM), Austin, TX, USA, 2014, pp. 911916.
    16. 16)
      • 23. Wu, Y., Chen, J., Qian, L.P., et al: ‘Energy-aware cooperative traffic offloading via device-to-device cooperations: an analytical approach’, IEEE Trans. Mob. Comput., 2017, 16, (1), pp. 97114.
    17. 17)
      • 16. Pei, Y., Liang, Y.C.: ‘Resource allocation for device-to-device communications overlaying two-way cellular networks’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36113621.
    18. 18)
      • 36. Tanab, M.E., Hamouda, W.: ‘Resource allocation for underlay cognitive radio networks: a survey’, IEEE Signal Process. Mag., 2017, 19, (2), pp. 12491276.
    19. 19)
      • 44. He, P., Zhao, L., Zhou, S., et al: ‘Water-filling: a geometric approach and its application to solve generalized radio resource allocation problems’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36373646.
    20. 20)
      • 19. Alabbasi, A., Rezki, Z., Shihada, B.: ‘Energy efficient resource allocation for cognitive radios: a generalized sensing analysis’, IEEE Trans Wirel. Commun., 2015, 14, (5), pp. 24552469.
    21. 21)
      • 5. Feng, D., Jiang, C., Lim, G., et al: ‘A survey of energy-efficient wireless communications’, IEEE Commun. Surv. Tutor., 2013, 15, (1), pp. 167178.
    22. 22)
      • 35. Phunchongharn, P., Hossain, E., Kim, D.I.: ‘Resource allocation for device-to-device communications underlaying LTE-advanced networks’, IEEE Wirel. Commun., 2013, 20, (4), pp. 91100.
    23. 23)
      • 37. Alsharoa, A., Ghazzai, H., Yaacoub, E., et al: ‘Joint bandwidth and power allocation for MIMO two-way relays-assisted overlay cognitive radio systems’, IEEE Trans. Cognit. Commun. Netw., 2015, 1, (4), pp. 383393.
    24. 24)
      • 31. Zhou, Z., Ma, G., Xu, C., et al: ‘Energy-efficient resource allocation in cognitive D2D communications: a game-theoretical and matching approach’. IEEE Int Conf. on Communications (ICC), Kuala Lumpur, Malaysia, 2016, pp. 16.
    25. 25)
      • 33. Zhao, Q., Sadler, B.M.: ‘A survey of dynamic spectrum access’, IEEE Signal Process. Mag., 2007, 24, (3), pp. 7989.
    26. 26)
      • 25. Wang, F., Xu, C., Song, L., et al: ‘Energy-efficient resource allocation for device-to-device underlay communication’, IEEE Trans. Wirel. Commun., 2015, 14, (4), pp. 20822092.
    27. 27)
      • 12. Hoang, T.D., Le, L.B., Le-Ngoc, T.: ‘Energy-efficient resource allocation for D2D communications in cellular networks’, IEEE Trans. Veh. Technol., 2016, 65, (9), pp. 69726986.
    28. 28)
      • 22. Yang, K., Martin, S., Xing, C., et al: ‘Energy-efficient power control for device-to-device communications’, IEEE J. Sel. Areas Commun., 2016, 34, (12), pp. 32083220.
    29. 29)
      • 14. Yang, K., Martin, S., Boukhatem, L., et al: ‘Energy-efficient resource allocation for device-to-device communications overlaying LTE networks’, IEEE Vehicular Technology Conf. (VTC 2015-Fall), 2015, pp. 16.
    30. 30)
      • 10. Aijaz, A., Aghvami, A.H.: ‘Cognitive machine-to-machine communications for internet-of-things: a protocol stack perspective’, IEEE Internet Things J., 2015, 2, (2), pp. 103112.
    31. 31)
      • 17. Illanko, K., Naeem, M., Anpalagan, A., et al: ‘Energy-efficient frequency and power allocation for cognitive radios in television systems’, IEEE Syst. J., 2016, 10, (1), pp. 313324.
    32. 32)
      • 1. Ericsson White Paper: ‘More than 50 billion connected devices’. Tech. Rep. 284 23-3149 Uen, Stockholm, Sweden, February, 2011.
    33. 33)
      • 9. Niu, Z., Cheng, R., Chrisikos, G.: ‘Device-to-device communications in cellular networks, part 1’, IEEE J. Sel. Areas Commun., 2015, 33, (1), pp. 1120.
    34. 34)
      • 11. Ali, A., Hamouda, W.: ‘Advances on spectrum sensing for cognitive radio networks: theory and applications’, IEEE Commun. Surv. Tutor., 2017, 19, (2), pp. 12771304.
    35. 35)
      • 13. Jiang, Y., Liu, Q., Zheng, F., et al: ‘Energy-efficient joint resource allocation and power control for D2D communications’, IEEE Trans. Veh. Technol., 2016, 65, (8), pp. 61196127.
    36. 36)
      • 27. Khoshkholgh, M.G., Zhang, Y., Chen, K.C., et al: ‘Connectivity of cognitive device-to-device communications underlying cellular networks’, IEEE J. Sel. Areas Commun., 2015, 33, (1), pp. 8199.
    37. 37)
      • 34. Akyildiz, I.F., Lee, W.Y., Chowdury, K.R.: ‘CRAHNs: cognitive radio ad hoc networks’, J. Ad Hoc Netw., 2009, 7, (5), pp. 810836.
    38. 38)
      • 2. Jayakumar, H., Raha, A., Kim, Y., et al: ‘Energy-efficient system design for ioT devices’. IEEE Int. Conf. Asia and South Pacific Design Automation Conf. (ASP-DAC), Macau, China, 2016, pp. 14.
    39. 39)
      • 29. Wu, X., Chen, Y., Yuan, X., et al: ‘Joint resource allocation and power control for cellular and device-to-device multicast based on cognitive radio’, IET Commun., 2014, 8, (16), pp. 28052813.
    40. 40)
      • 43. He, P., Zhang, S., Zhao, L., et al: ‘Multi-channel power allocation for maximizing energy efficiency in wireless networks’, IEEE Trans. Veh. Technol., 2018, 67, (7), pp. 58955908.
    41. 41)
      • 45. He, P., Zhao, L.: ‘Solving a class of sum power minimization problems using generalized water-filling’, IEEE Trans. Wirel. Commun., 2015, 14, (12), pp. 67926804.
    42. 42)
      • 4. Fehske, A., Malmodin, J.G.B., Fettweis, G.: ‘the global footprint of mobile communications: the ecological and economic perspective’, IEEE Commun. Mag., 2011, 49, (8), pp. 5562.
    43. 43)
      • 7. Cheng, P., Deng, L., Yu, H., et al: ‘Resource allocation for cognitive networks with D2D communication: an evolutionary approach’, Proc. IEEE Wireless Communications and Networking Conf., 2012, pp. 26712676.
    44. 44)
      • 39. Doppler, K., Ribeiro, C.B., Kneckt, J.: ‘Advances in D2D communications: energy efficient service and device discovery radio’. Proc. IEEE Int. Conf. on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology (Wireless VITAE), Chennai, India, 2011, pp. 16.
    45. 45)
      • 6. Marinho, J., Monteiro, E.: ‘Cognitive radio: survey on communications protocols, spectrum issues, and future research directions’, Wirel. Netw., 2012, 18, (2), pp. 147164.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5464
Loading

Related content

content/journals/10.1049/iet-com.2018.5464
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading