access icon free Optimisation of convergence-aware coded PDMA for 5G wireless systems

Orthogonal frequency division multiplexing-based pattern division multiple access (PDMA) is considered as a promising multiple access scheme for future wireless communication systems due to its high spectral efficiency and powerful ability to support massive users. In this study, it is shown that two pattern matrices with unequal diversity gain in the PDMA system have better convergence performance compared with the signature matrices in a traditional low-density signature multiple access system by simulations and extrinsic information transfer (EXIT) chart analysis. For a low-density parity check (LDPC)-coded PDMA system, the EXIT characteristics between the front-end multiple-user detector (MUD) and the LDPC decoder may be mismatch, which usually leads to degraded performance when an iterative detection and decoding algorithm is used. To overcome this problem, a two-stage iterative optimisation algorithm, which is easy to implement is proposed to find an optimal (near optimal) degree distribution pair for the LDPC code. Both EXIT chart analysis and simulation results demonstrate that the proposed algorithm exhibits further performance gain compared with regular (3,6) LDPC-coded systems under both an additive white Gaussian noise channel and a Rayleigh fading channel.

Inspec keywords: parity check codes; decoding; OFDM modulation; matrix algebra; AWGN channels; optimisation; Rayleigh channels; 5G mobile communication; multi-access systems; iterative methods

Other keywords: spectral efficiency; convergence-aware coded PDMA; wireless communication systems; EXIT chart analysis; LDPC decoder; optimal degree distribution pair; LDPC-coded PDMA system; low-density parity check-coded PDMA system; EXIT characteristics; additive white Gaussian noise channel; multiple-user detector; iterative detection; extrinsic information transfer chart analysis; orthogonal frequency division multiplexing; pattern matrices; Rayleigh fading channel; multiple access scheme; signature matrices; 5G wireless systems; pattern division multiple access; unequal diversity gain; low-density signature multiple access system; front-end multiple-user detector; two-stage iterative optimisation algorithm; decoding algorithm

Subjects: Multiple access communication; Optimisation techniques; Mobile radio systems; Interpolation and function approximation (numerical analysis); Codes; Linear algebra (numerical analysis)

References

    1. 1)
      • 4. Cai, X.D., Zhou, S.L., Giannakis, G.B.: ‘Group-orthogonal multicarrier CDMA’, IEEE Trans. Commun., 1999, 52, (1), pp. 9099.
    2. 2)
      • 3. Nikopour, H., Baligh, H.: ‘Sparse code multiple access’. Proc. IEEE Personal, Indoor and Mobile Radio Communications (PIMRC), London, UK, 2013, pp. 332336.
    3. 3)
      • 12. Hu, J., Duman, T.M.: ‘Graph-based detector for VBLAST architecture’. Proc. IEEE Int. Conf. on Communications, Glasgow, UK, June 2007, pp. 10181023.
    4. 4)
      • 11. Som, P., Datta, T., Srinidhi, N., et al: ‘Low-complexity detection in large-dimension MIMO-ISI channels using graphical models’, IEEE J. Sel. Top. Signal Process., 2011, 5, (8), pp. 14971511.
    5. 5)
      • 10. Choi, J.W., Singer, A.C., Lee, J., et al: ‘Improved linear soft-input soft-output detection via soft feedback successive interference cancellation’, IEEE Trans. Commun., 2010, 58, (3), pp. 986996.
    6. 6)
      • 5. Hoshyar, R., Wathan, F.P., Tafazolli, R.: ‘Novel low-density signature for synchronous CDMA systems over AWGN channel’, IEEE Trans. Signal Process., 2008, 56, (4), pp. 16161626.
    7. 7)
      • 22. ‘IT++ lib’. Available at http://itpp.sourceforge.net/4.3.1//, 2013.
    8. 8)
      • 2. Boccardi, F., Heath, R.W., Lozano, A., et al: ‘Five disruptive technology directions for 5G’, IEEE Trans. Mag., 2014, 52, (2), pp. 7480.
    9. 9)
      • 18. Wen, L., Razavi, R., Imran, M.A., et al: ‘Design of joint sparse graph for OFDM (JSG-OFDM) system’, IEEE Trans. Wirel. Commun., 2015, 14, (4), pp. 18231836.
    10. 10)
      • 7. Dai, X.M., Chen, S.Z., Sun, S.H., et al: ‘Successive interference cancelation amenable multiple access (SAMA) for future wireless communications’. Proc. IEEE Int. Conf. on Circuits and Systems (ICCS), Macau, China, 2014, pp. 222226.
    11. 11)
      • 14. EI-Hajjar, M., Hanzo, L.: ‘EXIT charts for system design and analysis’, IEEE Commun. Surv. Tutor., 2013, 16, (1), pp. 127153.
    12. 12)
      • 21. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, ambridge, United Kingdom, 2004).
    13. 13)
      • 17. Richardson, T.J., Urbank, R.L.: ‘Modern coding theory’ (Cambridge University Press, New York, USA, 2008).
    14. 14)
      • 16. Richardson, T.J., Shokrollahi, M.A.: ‘Design of capacity-approaching irregular low-density parity-check codes’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 619637.
    15. 15)
      • 8. Chung, S., Forney, G.D., Richardson, T.J., et al: ‘On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit’, IEEE Commun. Lett., 2001, 5, (2), pp. 5860.
    16. 16)
      • 19. Narasimhan, T.L., Chockalingam, A.: ‘EXIT chart based design of irregular LDPC codes for large-MIMO systems’, IEEE Commun. Lett., 2013, 17, (1), pp. 115118.
    17. 17)
      • 9. Brink, S., ten Kramer, G., Ashikhmin, A.: ‘Design of low-density parity-check codes for modulation and detection’, IEEE Trans. Commun., 2010, 52, (4), pp. 670678.
    18. 18)
      • 1. Dai, L.L., Wang, B.C., Yuan, Y.F., et al: ‘Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends’, IEEE Trans. Mag., 2015, 53, (9), pp. 7481.
    19. 19)
      • 13. Tuchler, M., Singer, A.C.: ‘Turbo equalization: an overview’, IEEE Trans. Inf. Theory, 2011, 57, (2), pp. 920952.
    20. 20)
      • 15. 3rd Generation Partnership Project: ‘Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (EUTRA); Multiplexing and channel coding’, 3GPP, March 2010, TS 36.212 V9.1.0.
    21. 21)
      • 6. van de Beek, J., Popovi, B.M.: ‘Multiple access with low-density signature’. Proc. IEEE GLOBECOM, Honolulu, HI, USA, 2010, pp. 16.
    22. 22)
      • 20. Franceschini, M., Ferrari, G., Raheli, R., et al: ‘Serial concatenation of LDPC codes and differential modulations’, IEEE J. Sel. Areas Commun., 2005, 23, (9), pp. 17581768.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5429
Loading

Related content

content/journals/10.1049/iet-com.2018.5429
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading