Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

UE-centric clustering and resource allocation for practical two-tier heterogeneous cellular networks

UE-centric clustering and resource allocation for practical two-tier heterogeneous cellular networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The heterogeneous cellular network (HetNet) has emerged as a promising technology for the fifth generation mobile networks that can be used to meet high demand of data rate and better quality of service (QoS) performance. However, the performance of HetNet will depend on how scarce resources such as frequency, time, power and spatial resource are shared among user equipments (UEs) in the system and also how interference is controlled. In this work, we utilise UE-Centric clustering as a tool to effectively determine the interfering base stations (BSs) that cause significant interference to each UE in the network. These interfering BSs together with the serving BSs of these interfered UEs will coordinate and make resource allocation (RA) decisions together to allocate spatial directions to each UE in the network in order to manage interference in the network. We formulate the RA problem as maximizing the weighted sum-rate of the HetNet while fulfilling power, QoS and interference constraints. This optimization problem is non-convex. We readily split the RA problem into two sub-problems: the spatial direction allocation problem and the power allocation problem, respectively. We are able to solve these problems efficiently using SeDumi. Simulation results of our proposed method, show significant improvement.

References

    1. 1)
      • 40. Bengttsson, M., Ottersten, B.: ‘Optimal and suboptimal transmit beamforming’, in Godara, L.C. (ED): ‘Handbook of antennas in wireless Communication’ (CRC Press, Boca Raton, Florida, USA, 2001), pp. 133.
    2. 2)
      • 13. Han, T., Kobayashi, K.: ‘A new achievable rate region for the interference channel’, IEEE Trans. Inf. Theory, 1981, 27, (1), pp. 4960.
    3. 3)
      • 20. Wyner, A.: ‘Shannon-theoretic approach to a Gaussian cellular multiple-access channel’, IEEE Trans. Inf. Theory, 1994, 40, (6), pp. 17131727.
    4. 4)
      • 26. Wang, H., Zhou, X., Reed, M.: ‘Coverage and throughput analysis with non-uniform small cell deployment’, IEEE Trans. Wirel. Commun., 2014, 13, (4), pp. 20472059.
    5. 5)
      • 41. Sturm, J.F.: ‘Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones’, Opt. Meth. Softw., 1999, 11, (1–4), pp. 625653.
    6. 6)
      • 18. Nigam, G., Minero, P., Haenggi, M.: ‘Coordinated multipoint joint transmission in heterogeneous networks’, IEEE Trans. Commun., 2014, 62, (11), pp. 41344146.
    7. 7)
      • 24. Marsh, P., Fettweis, G.: ‘On multicell cooperation transmission in backhaul-constrained cellular system’, Ann. Telecommun., 2008, 63, pp. 253269.
    8. 8)
      • 2. Nam, W., Bai, D., Lee, J., et al: ‘Advanced interference management for 5G cellular networks’, IEEE Commun. Mag., 2014, 52, (5), pp. 5260.
    9. 9)
      • 6. R1-111282: ‘Performance evaluation of CoMP JT for scenario 2’. Available at http://www.3gpp.org/DynaReport/TDocExMtg–R1-65–28504.htm, accessed January 2018.
    10. 10)
      • 33. Huang, Y., Zhang, X., Zhang, J., et al: ‘Energy-efficient design in heterogeneous cellular networks based on large-scale user behavior constraints’, IEEE Trans. Wirel. Commun., 2014, 13, (9), pp. 47464757.
    11. 11)
      • 4. Oguejiofor, O., Zhang, L.: ‘Heuristic coordinated beamforming for heterogeneous cellular network’. Proc. IEEE 83rd Vehicular Technology Conf. (VTC Spring), Nanjing, China, May 2016, pp. 15.
    12. 12)
      • 22. Shamai, S., Zaidel, B.: ‘Enhancing the cellular downlink capacity via co-processing at the transmitting end’. Proc. IEEE Vehicular Technology Conf. (VTC), Rhodes, Greece, May 2001, 3, pp. 17451749.
    13. 13)
      • 29. Chen, Y., Lu, Z., Wen, X., et al: ‘User-centric clustering and beamforming for energy optimization in cloud RAN’, Mob. Netw. Appl., 2018, 23, (3), pp. 503517.
    14. 14)
      • 9. R1-090140: ‘Clustering for CoMP transmission’. Available at http://www.3gpp.org/DynaReport/TDocExMtg–R1-55b–27322.htm, accessed January 2018.
    15. 15)
      • 39. Wiesel, A., Eldar, Y., Shamai, S.: ‘Linear precoding via conic optimization for fixed MIMO receivers’, IEEE Trans. Signal Process., 2007, 54, (6), pp. 26462660.
    16. 16)
      • 19. Tanbourgi, R., Singh, S., Andrews, J., et al: ‘Analysis of non-coherent joint-transmission cooperation in heterogeneous cellular networks’. Proc. IEEE Int. Conf. on Communications (ICC), Sydney, NSW, Australia, June 2014, 3, 51605165.
    17. 17)
      • 23. Huang, H., Trivellato, M., Hottinen, A., et al: ‘Increasing downlink cellular throughput with limited network MIMO coordination’, IEEE Trans. Wirel. Commun., 2009, 8, (6), pp. 29832989.
    18. 18)
      • 10. Dahrouj, H., Yu, W.: ‘Coordinated beamforming for the multicell multi-antenna wireless system’, IEEE Trans. Wirel. Commun., 2010, 9, (5), pp. 17481759.
    19. 19)
      • 36. Scutari, G., Palomar, D.P.: ‘Cognitive MIMO radio’, IEEE Signal Process. Mag., 2008, 25, (6), pp. 4659.
    20. 20)
      • 1. Chu, X., Lopez-Perez, D., Yang, Y., et al: ‘Heterogeneous cellular networks: theory, simulation and deployment’ (Cambridge University Press, New York, 2013, 1st edn.).
    21. 21)
      • 48. TR 36.814: ‘Further advancements for EUTRA physical layer aspects: technical report’. Available at http://www.3gpp.org/ftp//Specs/archive/36series/36.814, accessed January 2018.
    22. 22)
      • 27. Akoum, S., Health, R.W.: ‘Interference coordination: random clustering and adaptive limited feedback’, IEEE Trans. Signal Process., 2013, 61, (7), pp. 18221834.
    23. 23)
      • 31. Khalili, A., Akhlaghi, S., Mirzaee, M.: ‘Asymptotic close to optimal joint resource allocation and power control in the uplink of two-cell networks’, arXiv:1711.07913, 2017.
    24. 24)
      • 5. Irmer, R., Droste, H., March, P., et al: ‘Coordinated multipoint: concepts, performance, and field trial results’, IEEE Commun. Mag., 2011, 49, (2), pp. 102111.
    25. 25)
      • 16. Mayer, H., Schlesinger, H.: ‘Antenna synchronization for coherent network MIMO’, U.S. Patent 20120002967, March 2010.
    26. 26)
      • 17. Dai, B., Yu, W.: ‘Sparse beamforming and user-centric clustering for downlink cloud radio access network’, IEEE Access., 2014, 2, pp. 13261339.
    27. 27)
      • 3. Chin, W., Fan, Z., Haines, R.: ‘Emerging technologies and research challenges for 5G wireless networks’, IEEE Wirel. Commun., 2014, 21, (2), pp. 106112.
    28. 28)
      • 30. Khalili, A., Akhlaghi, S., Hoseni, S.A.: ‘Joint resource allocation and antenna selection in the uplink of OFDMA networks’, arXiv:1801.02688, 2018.
    29. 29)
      • 44. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, England, UK, 2004).
    30. 30)
      • 51. Papadimitriou, C.H.: ‘Computational complexity’ (John Wiley and Sons Ltd, Hoboken, New Jersey, USA, 2003).
    31. 31)
      • 15. Shang, X., Chen, B., Poor, H.V.: ‘Multiuser MISO interference channels with single-user detection: optimality of beamforming and the achievable rate region’, IEEE Trans. Inf. Theory, 2011, 57, (7), pp. 42554273.
    32. 32)
      • 42. Grant, M., Boyd, S., Ye, Y.: ‘CVX: matlab software for disciplined convex programming version 2.1’. Available at http://cvxr.com/cvx, accessed January 2018.
    33. 33)
      • 11. Karakayali, M., Foschini, G., Valenzuela, R.: ‘Network coordination for spectrally efficient communications in cellular systems’, IEEE Wirel. Commun. Mag., 2006, 13, (4), pp. 5661.
    34. 34)
      • 47. Ho, Z., Gesbert, D.: ‘Balancing egoism and altruism on interference channel: the MIMO case’. Proc. IEEE Int. Conf. on Communications (ICC), Cape Town, South Africa, May 2010, pp. 15.
    35. 35)
      • 34. Soh, Y., Quek, T., Kountouris, M., et al: ‘Energy efficient heterogeneous cellular networks’, IEEE J. Sel. Areas Commun., 2013, 31, (5), pp. 840850.
    36. 36)
      • 25. Marsh, P., Fettweis, G.: ‘Static clustering for cooperative multi-point (coMP) in mobile communication’. Proc. IEEE Int. Conf. on Communications (ICC), Kyoto, Japan, July 2011, pp. 16.
    37. 37)
      • 45. Oguejiofor, O., Zhang, L.: ‘Global optimization of weighted sum-rate for downlink heterogeneous cellular networks’. Proc. IEEE 23rd Int. Conf. on Telecommunications (ICT), Thessaloniki, Greece, May 2016, pp. 16.
    38. 38)
      • 46. Tuy, H.: ‘Normal sets, polyblocks and monotonic optimization’, Vietnam J. Math., 1999, 27, (4), pp. 277300.
    39. 39)
      • 14. Liu, Y.F., Dai, Y.H.: ‘Coordinated beamforming for MISO interference channel: complexity analysis and efficient algorithms’, IEEE Trans. Signal Process., 2011, 59, (3), pp. 11421157.
    40. 40)
      • 7. R1-111290: ‘CoMP phase 1 evaluation results’. Available at http://www.3gpp.org/DynaReport/TDocExMtg–R1-65–28504.htm, accessed January 2018.
    41. 41)
      • 21. Gesbert, D., Hanly, S., Huang, H., et al: ‘Multi-cell MIMO cooperative networks: a new look at interference’, IEEE J. Sel. Areas Commun., 2010, 28, (9), pp. 13801408.
    42. 42)
      • 38. Joshi, S., Weeraddana, P., Codreanu, M.: ‘Weighted sum-rate maximization for MISO downlink cellular networks via branch and bound’, IEEE Trans. Signal Process., 2012, 60, (4), pp. 20902095.
    43. 43)
      • 8. R1-111277: ‘CoMP JT evaluation for phase 1 homogenous deployment’. Available at http://www.3gpp.org/DynaReport/TDocExMtg–R1-65–28504.htm, accessed January 2018.
    44. 44)
      • 50. Oguejiofor, O., Zhang, L., Nawaz, N.: ‘Resource allocation for practical two-tier heterogeneous cellular networks’. Proc. 23rd European Wireless (EW) Conf., Dresden, Germany, 2017, pp. 161166.
    45. 45)
      • 49. Park, J., Lee, N., Health, R.W.: ‘Base station cluster patterns for semi-static multi-cell cooperation in irregular network topologies’. Proc. IEEE 23rd European Signal Processing Conf. (EUSIPCO), Nice, France, 2015, pp. 24412445.
    46. 46)
      • 32. Zhang, X., Su, Z., Yan, Z., et al: ‘Energy-efficiency study for two-tier heterogeneous networks (HetNet) under coverage performance constraints’, Mob. Netw. Appl., 2013, 18, (4), pp. 567577.
    47. 47)
      • 43. Gershman, A.B., Sidiropoulos, N.D.: ‘Convex optimization-based beamforming: from receive to transmit and network designs’, IEEE Signal Process. Mag., 2010, 27, (3), pp. 6275.
    48. 48)
      • 12. Gesbert, D., Kiani, S., Gjendemsjo, A., et al: ‘Adaptation, coordination, and distributed resource allocation in interference-limited wireless networks’, Proc. Inst. Elect. Electron. Eng., 2007, 95, (12), pp. 23932409.
    49. 49)
      • 35. Okino, K., Nakayama, T., Yamazaki, C., et al: ‘Pico cell range expansion with interference mitigation toward LTE-advanced heterogeneous networks’. Proc. IEEE Int. Conf. on Communications (ICC), Kyota, Japan, July 2011, pp. 15.
    50. 50)
      • 37. Huang, Y., Palomar, D.: ‘Rank-constrained separable semidefinite program with applications to optimal beamforming’, IEEE Trans. Signal Process., 2010, 58, (2), pp. 664678.
    51. 51)
      • 28. Li, C., Zhang, J., Haenggi, M., et al: ‘User-centric intercell nulling for downlink small cell networks’, IEEE Trans. Commun., 2015, 63, (4), pp. 14191431.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5422
Loading

Related content

content/journals/10.1049/iet-com.2018.5422
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address