access icon free Analysis of beam wander effect in high turbulence for FSO communication link

Atmospheric turbulence causes severe impairment of FSO communication link. Existing model underestimates the beam wander effect in high turbulence regime. In this paper, we model each turbulent eddy as a thin dielectric lens with Gaussian shaped refractive index profile and assume there are several sheets of eddies throughout the propagation path. We consider uniformly distributed eddy positions in a laminar sheet with Gamma distributed eddy sizes and refractive index fluctuations. We calculate mean beam wander and link availability for a given aperture size in high turbulence regime. Our simulation results show good concordance with the analytical results.

Inspec keywords: atmospheric light propagation; atmospheric turbulence; refractive index; gamma distribution; optical links

Other keywords: propagation path; eddy positions; high turbulence regime; refractive index fluctuations; turbulent eddy; aperture size; refractive index profile; atmospheric turbulence; dielectric lens; Gamma distributed eddy sizes; FSO communication link; beam wander effect

Subjects: Convection, turbulence, and diffusion in the lower atmosphere; Atmospheric optical propagation, radiative transfer; Atmospheric laser beam propagation

References

    1. 1)
      • 4. Majumdar, A.K.: ‘Free-space laser communication performance in the atmospheric channel’, J. Opt. Fiber Commun., 2005, 2, (4), pp. 345396.
    2. 2)
      • 25. Ishimaru, A.: ‘Strong fluctuation theory’, in ‘Wave propagation and scattering in random media’, vol. 2 (Academic Press, New York, 1978), pp. 407460.
    3. 3)
      • 31. Kopeika, N.S., Bordogna, J.: ‘Background noise in optical communication systems’, Proc. IEEE, 1970, 58, (10), pp. 15711577.
    4. 4)
      • 18. Kashani, M.A., Uysal, M., Kavehrad, M.: ‘A novel statistical channel model for turbulence-induced fading in free-space optical systems’, J. Lightwave Tech., 2015, 33, (11), pp. 23032312.
    5. 5)
      • 17. Jurado-Navas, A., Garrido-Balsells, J.M., Castillo-Vázquez, M., et al: ‘Fade statistics of M-turbulent optical links’, EURASIP J. Wirel. Commun. Netw., 2017, 1, pp. 112.
    6. 6)
      • 24. Fante, R.L.: ‘Electromagnetic beam propagation in turbulent media’, Proc. IEEE, 1975, 63, pp. 16691692.
    7. 7)
      • 26. Dios, F., Rubio, J.A., Rodríguez, A., et al: ‘Scintillation and beam-wander analysis in an optical ground station-satellite uplink’, Appl. Opt., 2004, 43, (19), pp. 38663873.
    8. 8)
      • 21. Andrews, L.C., Phillips, R.L., Hopen, C.Y.: ‘Modeling optical scintillation’, in Press monograph vol. PM99: ‘Laser beam scintillation with applications’ (SPIE Press, Washington, 2001), pp. 6796.
    9. 9)
      • 12. Andrews, L.C., Phillips, R.L.: ‘Optical turbulence in the atmosphere’, in Pepper, E., (Ed.): ‘Laser beam propagation through random media’ (SPIE Press, Washington, 2005), pp. 5782.
    10. 10)
      • 1. Chan, V.W.S.: ‘Free-space optical communications’, J. Lightwave Tech., 2006, 24, (12), pp. 47504762.
    11. 11)
      • 23. Latsa Babu, P., Srinivasan, B.: ‘Characterizing the atmospheric effects on laser beam propagation for free space optical communication’. National Conf. on Communications, India, 2008, pp. 332334.
    12. 12)
      • 30. Hecht, E., ‘Ray tracing and ABCD matrix’, https://slideplayer.com/slide/10351131/, accessed July, 2018.
    13. 13)
      • 6. Kaushal, H., Kaddoum, G., Jain, V.K., et al: ‘Experimental investigation of optimum beam size for FSO uplink’, Opt. Commun., 2017, 400, pp. 106114.
    14. 14)
      • 20. Ghasemi, A., Abedi, A., Ghasemi, F.: ‘Selected topics in radiowave propagation’ in ‘Propagation engineering in wireless communications’ (Springer, Switzerland, 2011, 2nd edn., 2016), pp. 403427.
    15. 15)
      • 22. Firoozmand, M., Moghadasi, M.N.: ‘Modeling and simulation of fading due of atmospheric turbulence by chi-squared and exponential pdf for a FSO link’, NNGT Int. J. Net. Comput., 2015, 2, pp. 19.
    16. 16)
      • 27. Recolons, J., Andrews, L.C., Phillips, R.L.: ‘Analysis of beam wander effects for a horizontal-path propagating Gaussian-beam wave: focused beam case’, Opt. Eng., 2007, 46, (8), pp. 086002-1086002-11.
    17. 17)
      • 13. Kaushal, H., Jain, V.K., Kar, S.: ‘Free-space optical channel models’, in Mukherjee, B., (Ed.): ‘Free space optical communication’ (Springer, India, 2017), pp. 4189.
    18. 18)
      • 15. Al-Habash, M.A., Andrews, L.C., Phillips, R.L.: ‘Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media’, Opt. Eng., 2001, 40, (8), pp. 15541562.
    19. 19)
      • 29. Srinivasan, R., Sridharan, D.: ‘The climate effects on line of sight (LOS) in FSO communication’. IEEE Int. Conf. on Computational Intelligence and Computing Research, Coimbatore, India, 2010.
    20. 20)
      • 14. Majumdar, A.K., Ricklin, J.C.: ‘Free space laser communications-principles and advances’ (Springer, New York, 2008).
    21. 21)
      • 8. Lee, I.E., Ghassemlooy, Z., Pang, W., et al: ‘Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors’, Appl. Opt., 2016, 55, (1), pp. 19.
    22. 22)
      • 19. Mukherjee, A., Kar, S., Jain, V.K.: ‘Analysis of FSO link under atmospheric turbulence from first principle’, 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, in Omatsu, T., (Ed.): ‘OSA technical digest (online)’ (Optical Society of America, Tokyo, Japan, 2017), paper 30aOD6.
    23. 23)
      • 16. Barrios, R.: ‘Exponentiated Weibull fading channel model in free-space optical communications under atmospheric turbulence’. PhD thesis, Polytechnic University of Catalonia, 2013.
    24. 24)
      • 32. Kazemlou, S., Hranilovic, S., Kumar, S.: ‘All-optical multihop free-space optical communication systems’, J. Lightwave Tech., 2011, 29, (18), pp. 26632669.
    25. 25)
      • 10. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: ‘Channel modelling’, in ‘Optical wireless communications: system and channel modelling with Matlab®’ (CRC Press, Boca Raton, 2012), pp. 77159.
    26. 26)
      • 11. Prokeš, A.: ‘Modeling of atmospheric turbulence effect on terrestrial FSO link’, Radio Eng., 2009, 18, (1), pp. 4247.
    27. 27)
      • 5. Arockia Bazil Raj, A., Darusalam, U.: ‘Performance improvement of terrestrial free-space optical communications by mitigating the focal-spot wandering’, J. Mod. Opt., 2016, 63, (21), pp. 23392347.
    28. 28)
      • 28. Prokeš, A.: ‘Terrestrial free space optics architecture’. PhD thesis, BRNO University of Technology, 2009.
    29. 29)
      • 2. Henniger, H., Wilfert, O.: ‘An introduction to free-space optical communications’, Radio Eng., 2010, 19, (2), pp. 203212.
    30. 30)
      • 3. Nistazakis, H.E., Tsiftsis, T.A., Tombras, G.S.: ‘Performance analysis of free-space optical communication systems over atmospheric turbulence channels’, IET Commun., 2009, 3, (8), pp. 14021409.
    31. 31)
      • 7. Alkholidi, A.G., Altowij, K.S.: ‘Free space optical communications-theory and practices’, in Khatib, M,. (Ed.): ‘Contemporary issues in wireless communication’ (InTech, London, 2014), pp. 159212.
    32. 32)
      • 9. Kaushal, H., Kaddoum, G.: ‘Optical communication in space: challenges and mitigation techniques’, IEEE Commun. Surv. Tutor., 2017, 19, (1), pp. 5796.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5409
Loading

Related content

content/journals/10.1049/iet-com.2018.5409
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading