access icon free Energy efficient power allocation approach to asymmetric analogue network coding with rate-dependent circuit power

Energy efficiency (EE) plays an indispensable role in the battery constrained systems. In this study, the EE optimisation problem for asymmetric analogue network coding (ANC) protocol is analysed in a two-way relaying network, where the two sources have different transmission rate requirements. A generalised power consumption model is applied consisting of not only the transmit power and fixed circuit power, but also the most general rate-dependent dynamic circuit power, with which a power allocation problem is formulated to achieve the maximal EE constrained by the rate requirements as well as the total transmit power budget. By exploiting the two-layer optimisation method and non-linear fractional programming theorem, the original EE maximisation problem is solved in an efficient way. Specially, when the rate-dependent circuit power is modelled as the linear function of transmission rate, a closed-form solution is obtained. Through simulations, the proposed power allocation algorithm is verified and the impacts of some system parameters such as relay location, transmit power and transmission rate asymmetry are also provided to gain useful insights, which facilitates the energy-efficient design for the practical asymmetric ANC protocol.

Inspec keywords: energy conservation; network coding; protocols; relay networks (telecommunication); telecommunication power management; resource allocation; power consumption; nonlinear programming

Other keywords: EE maximisation problem; closed-form solution; generalised power consumption model; EE optimisation problem; linear function; two-layer optimisation method; transmission rate requirements; asymmetric analogue network coding protocol; battery constrained systems; two-way relaying network; power allocation problem; nonlinear fractional programming theorem; total transmit power budget; system parameters; asymmetric ANC protocol; energy-efficient design; fixed circuit power; energy efficient power allocation approach; general rate-dependent dynamic circuit power; transmission rate asymmetry

Subjects: Optimisation techniques; Radio links and equipment; Codes; Telecommunication systems (energy utilisation); Protocols

References

    1. 1)
      • 12. Huang, R., Feng, C.Y., Zhang, T.K.: ‘Energy efficient design in AF relay networks with bidirectional asymmetric traffic’. Proc. IEEE WCNCW, Paris, France, 2012, 711.
    2. 2)
      • 31. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, New York, USA, 2009).
    3. 3)
      • 32. Baronti, P., Pillai, P.: ‘Wireless sensor networks: A survey on the state of the art and the 802.15.4 and zigBee standards’, Comput. Commun., 2007, 30, (7), pp. 15661695.
    4. 4)
      • 29. Li, J., Cimini, L.J., Ge, J.H.: ‘Optimal and suboptimal joint relay and antenna selection for two-way amplify-and-forward relaying’, IEEE Trans. Wirel. Commun., 2016, 15, (2), pp. 980993.
    5. 5)
      • 11. Zhou, M., Cui, Q.M., Jantti, R., et al: ‘Energy-efficient relay selection and power allocation for two-way relay channel with analog network coding’, IEEE Commun. Lett., 2012, 16, (6), pp. 816819.
    6. 6)
      • 30. Dinkelbach, W.: ‘On nonlinear fractional programming’, Manag. Sci., 1967, 13, (7), pp. 492498.
    7. 7)
      • 25. Zhou, C.M., Li, J., Cimini, L.J.: ‘Energy efficiency region for gaussian multiple access channels under different power consumption models’. Proc. IEEE CISS, Baltimore, MD, USA, 2015, 15.
    8. 8)
      • 18. Cui, S.G., Goldsmith, A.J., Bahai, A.: ‘Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks’, IEEE J. Select. Areas. Commun., 2004, 22, (6), pp. 10891098.
    9. 9)
      • 34. Albulet, M.: ‘RF power amplifiers’ (Institution of Engineering and Technology Electromagnetic Waves Press, Atlanta, USA, 2001).
    10. 10)
      • 19. Sun, Q., Li, L.H., Juntti, M.: ‘Energy efficient transmission and optimal relay location for two-way relay systems’. Proc. IEEE WCNC, Shanghai, China, 2013, 28282832.
    11. 11)
      • 1. Chen, Y., Zhang, S.Q., Li, Y.G.: ‘Fundamental trade-offs on green wireless networks’, IEEE Commun. Mag., 2011, 49, (6), pp. 3037.
    12. 12)
      • 17. Cui, S.G., Goldsmith, A.J., Bahai, A.: ‘Energy-constrained modulation optimization’, IEEE Trans. Wriel. Commun., 2005, 4, (5), pp. 23492360.
    13. 13)
      • 33. D2.3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown’, http://cordis.europa.eu/docs/projects/cnect/3/247733/080/deliverables/001-EARTHWP2D23v2.pdf, accessed November, 2012.
    14. 14)
      • 21. Sun, C., Cen, Y.J., Yang, C.Y.: ‘Energy efficient OFDM relay systems’, IEEE Trans. Commun., 2013, 61, (5), pp. 17971809.
    15. 15)
      • 26. Ji, X.D., Zheng, B.Y., Cai, Y.M., et al: ‘On the study of half-duplex asymmetric two-way relay transmission using an amplify-and-forward relay’, IEEE Trans. Veh. Technol., 2012, 61, (4), pp. 16491664.
    16. 16)
      • 16. Zhang, C.S., Ge, J.H., Li, J., et al: ‘Energy efficiency and spectral efficiency tradeoff for asymmetric two-way AF relaying with statistical CSI’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 28332839.
    17. 17)
      • 9. Yang, J., Cao, X.H., Chen, R.: ‘Minimum transmit power under/considering relay selection for asymmetric two-way relaying networks’, IET Commun., 2014, 8, (18), pp. 32543258.
    18. 18)
      • 13. Zhou, Z., Zhou, S.L., Cui, S.G.: ‘Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks’, IEEE Trans. Wriel. Commun., 2008, 7, (8), pp. 30663078.
    19. 19)
      • 3. Feng, D.Q., Jiang, C.Z., Li, Y.G.: ‘A survey of energy-efficient wireless communications’, IEEE Commun. Surveys Tuts., 2013, 15, (1), pp. 167178.
    20. 20)
      • 4. Liu, J.B., Sun, S.H.: ‘Energy efficiency analysis of cache-enabled cooperative dense small cell networks’, IET Commun., 2017, 11, (4), pp. 477482.
    21. 21)
      • 15. Zhang, C.S., Ge, J.H., Li, J., et al: ‘Energy-aware power allocation for asymmetric analog network coding with statistical CSI’. Proc. IEEE WCNC, Shanghai, China, 2013, 25652569.
    22. 22)
      • 7. Pei, Y.Y., Liang, Y.C.: ‘Resource allocation for device-to-device communications overlaying two-way cellular networks’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36113621.
    23. 23)
      • 10. Sun, Q., Li, L.H., Song, L.: ‘Energy efficient relay selection for two-way relay system’. Proc. IEEE VTC Spring, Yokohama, Japan, 2012, 15.
    24. 24)
      • 24. Wang, Z.J., Stupia, I., Vandendorpe, L.: ‘Energy efficient precoder design for MIMO-OFDM with rate-dependent circuit power’. Proc. IEEE ICC, London, UK, 2015, 18971902.
    25. 25)
      • 5. Yang, Y.P., Chen, W., Li, O.: ‘Joint rate and power adaptation for amplify-and-forward two-way relaying relying on analog network coding’, IEEE Access, 2016, 4, pp. 24652478.
    26. 26)
      • 6. Ntontin, K., Renzo, M.D., Verikoukis, C.: ‘Analog-network-coded two-way relaying under the impact of CSI errors and network interference’, IEEE Trans. Veh. Technol., 2016, 65, (11), pp. 90299040.
    27. 27)
      • 8. Li, J., Zheng, Y., Ge, J.H., et al: ‘Low-complexity opportunistic transmission schemes for multi-user multi-relay asymmetric bidirectional relaying networks’, IEEE Trans. Wirel. Commun., 2016, 15, (8), pp. 51675181.
    28. 28)
      • 27. Li, J., Ge, J.H., Zhang, C.S., et al: ‘Impact of channel estimation error on bidirectional MABC-AF relaying with asymmetric traffic requirements’, IEEE Trans. Veh. Technol., 2013, 62, (4), pp. 17551769.
    29. 29)
      • 22. Kim, S., Lee, Y.H.: ‘Energy-efficient power allocation for OFDM signaling over a two-way AF relay’, IEEE Trans. Veh. Technol., 2015, 64, (10), pp. 48564863.
    30. 30)
      • 14. Li, Q.Q., Liu, Y.J., Zhang, X.F., et al: ‘Tradeoff between energy efficiency and spectral efficiency in two-way relay network’. Proc. IEEE ICCT, Chengdu, China, 2012, 929934.
    31. 31)
      • 20. Sun, C., Yang, C.Y.: ‘Energy-efficient hybrid one- and two-way relay transmission’, IEEE Trans. Veh. Technol., 2013, 62, (8), pp. 37373751.
    32. 32)
      • 28. Zhang, X.H., Hasna, M.O., Ghrayeb, A.: ‘An adaptive transmission scheme for two-way relaying with asymmetric data rates’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 14771491.
    33. 33)
      • 2. Buzzi, S., Chih-Lin, I., Klein, T.E., et al: ‘A survey of energy-efficient techniques for 5G networks and challenges ahead’, IEEE J. Select. Areas. Commun., 2016, 34, (4), pp. 697709.
    34. 34)
      • 23. Wang, T., Vandendorpe, L.: ‘On the optimum energy efficiency for flat-fading channels with rate-dependent circuit power’, IEEE Trans. Commun., 2013, 61, (12), pp. 49104921.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5274
Loading

Related content

content/journals/10.1049/iet-com.2018.5274
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading