http://iet.metastore.ingenta.com
1887

Beam-domain SWIPT in massive MIMO system with energy-constrained terminals

Beam-domain SWIPT in massive MIMO system with energy-constrained terminals

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors consider the simultaneous wireless information and power transfer (SWIPT) protocol design for the massive multiple-input multiple-output (MIMO) system in the beam-domain. In this system, the base station (BS) simultaneously serves a set of half-duplex energy-constrained terminals that are uniformly distributed within its coverage area. Based on the beam-domain distributions of channels, the BS can intelligently schedule terminals to mitigate the interference between terminals and improve the transmission spectral efficiency. The entire protocol can be divided into two phases. The first phase is designed for terminals energy harvesting as well as downlink training. During this phase, the BS transmits energy signals to the terminals. The terminals utilise the received energy signals for energy harvesting and downlink channel estimation. In the second phase, the BS forms the receive beamformers to receive signals transmitted by terminals. The transmit powers at the BS and the time switching ratio are optimised under the constraints of the current available energy and minimum transmission rate of terminals, so that the system can achieve the maximum sum-rate performance. Simulation results show that compared with traditional massive MIMO SWIPT protocols, the proposed SWIPT protocol can achieve better spectral efficiency performance.

References

    1. 1)
      • 1. Marzetta, T.L.: ‘Noncooperative cellular wireless with unlimited numbers of BS antennas’, IEEE Trans. Wireless Commun., 2010, 9, (11), pp. 35903600.
    2. 2)
      • 2. Rusek, F., Persson, D., Lau, B.K., et al: ‘Scaling up MIMO: opportunities and challenges with very large arrays’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 4060.
    3. 3)
      • 3. Hoydis, J., Brink, S., Debbah, M.: ‘Massive MIMO in UL/DL of cellular networks: how many antennas do we need?’ IEEE J. Sel. Areas Commun., 2013, 31, pp. 160171.
    4. 4)
      • 4. Xia, X., Xu, K., Wang, Y., et al: ‘A 5G-enabling technology: benefits, feasibility, and limitations of in-band full-duplex mMIMO’, to appear inIEEE Veh. Technol. Mag., Doi: 10.1109/MVT.2018.2792198.
    5. 5)
      • 5. Sun, C., Gao, X., Jin, S., et al: ‘Beam division multiple access transmission for massive MIMO communications’, IEEE Trans. Commun., 2015, 63, (6), pp. 21702184.
    6. 6)
      • 6. Sudevalayam, S., Kulkarni, P.: ‘Energy harvesting sensor nodes: survey and implications’, IEEE Communications Surveys and Tutorials, 2011, 13, (3), pp. 443461.
    7. 7)
      • 7. Xu, K., Shen, Z., Xia, X., et al: ‘Hybrid time-switching and power splitting SWIPT for full-duplex massive MIMO systems: A beam-domain approach’, to appear inIEEE Trans. Veh. Technol., Doi: 10.1109/TVT.2018.2831790.
    8. 8)
      • 8. Nguyen, D.K., Jayakody, D.N., Chatzinotas, S., et al: ‘Wireless energy harvesting assisted two-way cognitive relay networks: protocol design and performance analysis’, IEEE Access, 2017, 5, pp. 2144721460.
    9. 9)
      • 9. Wang, W., Wang, R., Mehrpouyan, H., et al: ‘Beamforming for simultaneous wireless information and power transfer in two-way relay channels’, IEEE Access, 2017, 5, pp. 92359250.
    10. 10)
      • 10. Liu, Z., Du, W., Sun, D.: ‘Energy and spectral efficiency tradeoff for massive MIMO systems with transmit antenna selection’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 44534457.
    11. 11)
      • 11. Xu, K., Shen, Z., Wang, Y., et al: ‘Beam-domain hybrid time-switching and power-splitting SWIPT in full-duplex massive MIMO system’, EURASIP J. Wirel. Commun. Netw., 2018, 2018, (39), pp. 122.
    12. 12)
      • 12. Zhou, F., Li, Z., Cheng, J., et al: ‘Robust AN-aided beamforming and power splitting design for secure MISO cognitive radio with SWIPT’, IEEE Trans. Wirel. Commun., 2017, 16, (4), pp. 24502464.
    13. 13)
      • 13. Lu, A.A., Gao, X., Zheng, Y.R., et al: ‘Linear precoder design for SWIPT in MIMO broadcasting systems with discrete input signals: manifold optimization approach’, IEEE Trans. Commun., 2017, 65, (7), pp. 28772888.
    14. 14)
      • 14. Varshney, L.: ‘Transporting information and energy simultaneously’. Proc. IEEE Int. Symp. on Information Theory (ISIT), Toronto, ON, Canada, 2008, pp. 16121616.
    15. 15)
      • 15. Grover, P., Sahai, A.: ‘Shannon meets tesla: wireless information and power transfer’. Proc. IEEE Int. Symp. on Information Theory (ISIT), Austin, TX, USA, 2010, pp. 23632367.
    16. 16)
      • 16. Zhou, X., Zhang, R., Ho, C.K.: ‘Wireless information and power transfer: architecture design and rate-energy tradeoff’, IEEE Trans. on Commun., 2013, 61, (11), pp. 47544767.
    17. 17)
      • 17. Lu, X., Wang, P., Niyato, D., et al: ‘Wireless networks with RF energy harvesting: A contemporary survey’, IEEE Commun. Surveys and Tutorials, 2015, 17, (2), pp. 757789.
    18. 18)
      • 18. Huang, K., Zhou, X.: ‘Cutting the last wires for mobile communications by microwave power transfer’, IEEE Commun. Mag., 2015, 53, (6), pp. 8693.
    19. 19)
      • 19. Krikidis, I., Timotheou, S., Sasaki, S.: ‘RF energy transfer for cooperative networks: data relaying or energy harvesting?’ IEEE Commun. Lett., 2012, 16, (11), pp. 17721775.
    20. 20)
      • 20. Nasir, A.A., Zhou, X, Durrani, S., et al: ‘Relaying protocols for wireless energy harvesting and information processing’, IEEE Trans. Wireless Commun., 2013, 12, (7), pp. 36223636.
    21. 21)
      • 21. Huang, Y., Clerckx, B.: ‘Relaying strategies for wireless-powered MIMO relay networks’, IEEE Trans. Wireless Commun., 2016, 15, (9), pp. 60336047.
    22. 22)
      • 22. Li, C., Yang, H.J., Sun, F., et al: ‘Multiuser overhearing for cooperative two-way multiantenna relays’, IEEE Trans. Vehicular Technology, 2016, 65, (5), pp. 37963802.
    23. 23)
      • 23. Chen, Z., Xia, B., Liu, H.: ‘Wireless information and power transfer in two-way amplify-and-forward relaying channels’. Proc. IEEE Global SIP., Atlanta, GA, USA, December 2014, pp. 168172.
    24. 24)
      • 24. Tutuncuoglu, K., Varan, B., Yener, A.: ‘Throughput maximization for two-way relay channels with energy harvesting nodes: the impact of relaying strategies’, IEEE Trans. Commun., 2015, 63, (6), pp. 20812093.
    25. 25)
      • 25. Li, D., Shen, C., Qiu, Z.: ‘Two-way relay beamforming for sum-rate maximization and energy harvesting’. Proc. IEEE ICC., Budapest, Hungary, June 2013, pp. 31553120.
    26. 26)
      • 26. Fan, L., Zhang, H., Huang, Y., et al: ‘Exploiting BS antenna tilt for SWIPT in 3-D massive MIMO systems’, IEEE Wireless Communications Letters, 2017, 6, (5), pp. 666669.
    27. 27)
      • 27. Wang, X., Liu, J., Zhai, C.: ‘Wireless power transfer based multi-pair two-way relaying with massive antennas’, IEEE Trans. Wirel. Commun., 2017, 16, (11), pp. 76727684.
    28. 28)
      • 28. Lee, S., Zeng, Y., Zhang, R.: ‘Retrodirective multi-user wireless power transfer with massive MIMO’, IEEE Wireless Communications Letters, 2018, 7, (1), pp. 5457.
    29. 29)
      • 29. Yang, G., Ho, C.K., Zhang, R., et al: ‘Throughput optimization for massive mimo systems powered by wireless energy transfer’, IEEE J. Sel. Areas Commun., 2015, 33, (8), pp. 16401650.
    30. 30)
      • 30. 3GPP TR 25.996.: ‘Universal mobile telecommunications system (UMTS); spatial channel model for multiple input multiple output (MIMO) simulations’, v.12.0.0, www.3gpp.org, June 2012.
    31. 31)
      • 31. Xia, X., Xu, K., Zhang, D., et al: ‘Beam-domain full-duplex massive MIMO: realizing co-time co-frequency uplink and downlink transmission in the cellular system’, IEEE Trans. Veh. Technol., 2017, 66, (10), pp. 88458862.
    32. 32)
      • 32. Sayeed, A.: ‘Deconstructing multiantenna fading channels’, IEEE Trans. Signal Process., 2002, 50, (10), pp. 25632579.
    33. 33)
      • 33. Pedersen, K.I., Mogensen, P.E., Fleury, B.H.: ‘A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments’, IEEE Trans. Veh. Technol., 2000, 49, (2), pp. 437447.
    34. 34)
      • 34. Meng, X., Gao, X., Xia, X.G.: ‘Omnidirectional precoding based transmission in massive MIMO systems’, IEEE Trans. Commun., 2016, 64, (1), pp. 174186.
    35. 35)
      • 35. Gao, X., Dai, L., Chen, Z., et al: ‘Near-optimal beam selection for beamspace mmWave massive MIMO systems’, IEEE Commun. Lett., 2016, 20, (5), pp. 10541057.
    36. 36)
      • 36. Chang, Z., Wang, Z., Guo, X., et al: ‘Energy-efficient resource allocation for wireless powered massive MIMO system with imperfect CSI’, IEEE Transactions on Green Communications and Networking, 2017, 1, (2), pp. 121130.
    37. 37)
      • 37. Zhao, M.M., Shi, Q., Cai, Y., et al: ‘Joint transceiver design for full-duplex cloud radio access networks with SWIPT’, IEEE Trans. Wirel. Commun., 2017, 16, (9), pp. 56445658.
    38. 38)
      • 38. Hassibi, B., Hochwald, B.M.: ‘How much training is needed in multiple-antenna wireless links?’ IEEE Trans. Inf. Theory, 2003, 49, (4), pp. 951963.
    39. 39)
      • 39. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, UK, 2004).
    40. 40)
      • 40. Xia, X., Xu, Y., Xu, K., et al: ‘Full-duplex massive MIMOAF relaying with semiblind gain control’, IEEE Trans. Veh. Technol., 2016, 65, (7), pp. 57975804.
    41. 41)
      • 41. 3GPP TR 36.828.: ‘Further enhancements to LTE time division duplex (TDD) for downlink-uplink (DL-UL) interference management and traffic adaptation’, v.11.0.0, www.3gpp.org, June 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5270
Loading

Related content

content/journals/10.1049/iet-com.2018.5270
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address