Social-aware incentive mechanism for full-view covered video collection in crowdsensing

Social-aware incentive mechanism for full-view covered video collection in crowdsensing

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Compared with a traditional fixed sensor network, mobile crowdsensing provides an efficient way to collect sensing data. However, conducting sensing tasks consumes the resources of mobile users (e.g. battery, storage memory, time). Therefore, incentive mechanism design plays a key role in efficiently collecting the sensing data in a mobile crowdsensing system. Most of existing works about the incentive mechanism design simply use a constant to describe the data quality. In this study, the authors focus on the collection of video clips and introduce multiple parameters to evaluate the quality of the collected data. By jointly considering the social relationship of mobile users, they propose a social-aware incentive mechanism to achieve the full-view coverage for a target by efficiently collecting video clips. The proposed mechanism satisfies the properties of individual rationality, truthful and computational efficiency. Simulation results show better performance of the proposed mechanism compared with random selection and aspect based selection. In specific, with the number of users , the proposed mechanism can improve the data collector's utility by 485% and 33% compared with random selection and aspect based selection, respectively.


    1. 1)
      • 1. Lane, N.D., Miluzzo, E., Lu, H., et al: ‘A survey of mobile phone sensing’, IEEE Commun. Mag., 2010, 48, (9), pp. 140150.
    2. 2)
      • 2. Ganti, R.K., Ye, F., Lei, H.: ‘Mobile crowdsensing: current state and future challenges’, IEEE Commun Mag., 2011, 49, (11), pp. 3239.
    3. 3)
      • 3. Consolvo, S., McDonald, D.W., Toscos, T., et al: ‘Activity sensing in the wild: a field trial of ubifit garden’. Proc. ACM (SIGCHI), Florence, Italy, 2008.
    4. 4)
      • 4. Rinner, B., Wolf, W.: ‘A bright future for distributed smart cameras’, Proc. IEEE, 2008, 96, (10), pp. 15621564.
    5. 5)
      • 5. Thiagarajan, A., Ravindranath, L., LaCurts, K., et al: ‘Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones’. Proc. ACM (SenSys 2009), New York, USA, 2009.
    6. 6)
      • 6. Chen, A., Lai, T.H., Xuan, D.: ‘Measuring and guaranteeing quality of barrier-coverage in wireless sensor networks’. Proc. ACM (MobiHoc 2008), Hong Kong, China, 2008.
    7. 7)
      • 7. Duan, L., Kubo, T., Sugiyama, K., et al: ‘Incentive mechanisms for smartphone collaboration in data acquisition and distributed computing’. Proc. IEEE (INFOCOM 2012), Orlando, USA, 2012.
    8. 8)
      • 8. Yang, D., Xue, G., Fang, X., et al: ‘Crowdsourcing to smartphones: incentive mechanism design for mobile phone sensing’. Proc. ACM (MobiCom 2012), Istanbul, Turkey, 2012.
    9. 9)
      • 9. Sun, J., Pei, Y., Hou, F., et al: ‘Reputation-aware incentive mechanism for participatory sensing’, IET Commun., 2017, 11, (13), pp. 19851991.
    10. 10)
      • 10. Ota, K., Dong, M., Gui, J., et al: ‘QUOIN: incentive mechanisms for crowd sensing networks’, IEEE Netw., 2018, 32, (2), pp. 114119.
    11. 11)
      • 11. Hu, Y., Dong, M., Ota, K., et al: ‘Mobile target detection in wireless sensor networks with adjustable sensing frequency’, IEEE Syst. J., 2016, 10, (3), pp. 11601171.
    12. 12)
      • 12. Li, H., Ota, K., Dong, M., et al: ‘Mobile crowdsensing in software defined opportunistic networks’, IEEE Commun. Mag., 2017, 55, (6), pp. 140145.
    13. 13)
      • 13. Koutsopoulos, I.: ‘Optimal incentive-driven design of participatory sensing systems’. Proc. IEEE (INFOCOM 2013), Turin, Italy, 2013.
    14. 14)
      • 14. Luo, T., Tan, H.-P., Xia, L.: ‘Profit-maximizing incentive for participatory sensing’. Proc. IEEE (INFOCOM 2014), Toronto, Canada, 2014.
    15. 15)
      • 15. Feng, Z., Zhu, Y., Zhang, Q., et al: ‘Trac: truthful auction for location-aware collaborative sensing in mobile crowdsourcing’. Proc. IEEE (INFOCOM 2014), Toronto, Canada, 2014.
    16. 16)
      • 16. Jaimes, L.G., Vergara-Laurens, I., Labrador, M.A.: ‘A location-based incentive mechanism for participatory sensing systems with budget constraints’. Proc. IEEE (PerCom 2012), Lugano, Switzerland, 2012.
    17. 17)
      • 17. Jin, H., Su, L., Nahrstedt, K.: ‘Centurion: incentivizing multirequester mobile crowd sensing’. Proc. IEEE (INFOCOM 2017), Atlanta, USA, 2017.
    18. 18)
      • 18. Liu, S., Zheng, Z., Wu, F., et al: ‘Context-aware data quality estimation in mobile crowdsensing’. Proc. IEEE (INFOCOM 2017), Atlanta, USA, 2017.
    19. 19)
      • 19. Wu, Y., Wang, Y., Cao, G.: ‘Photo crowdsourcing for area coverage in resource constrained environments’. Proc. IEEE (INFOCOM 2017), Atlanta, USA, 2017.
    20. 20)
      • 20. Wang, Y., Cao, G.: ‘Barrier coverage in camera sensor networks’. Proc. ACM (MobiHoc 2011), France, 2011.
    21. 21)
      • 21. Chen, W., Wang, C., Wang, Y.: ‘Scalable influence maximization for prevalent viral marketing in large-scale social networks’. Proc. ACM (SIGKDD 2010), Washington, DC, USA, 2010.
    22. 22)
      • 22. Myerson, R.B.: ‘Optimal auction design’, Math. Oper. Res., 1981, 6, (1), pp. 5873.
    23. 23)
      • 23.

Related content

This is a required field
Please enter a valid email address