Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Deep clipping noise mitigation using ISTA with the specified observations for LED-based DCO-OFDM system

Deep clipping is beneficial for the optical orthogonal frequency division multiplexing (O-OFDM) system, since it can lower the peak-to-average power ratio, reduce the direct current requirement in light emitting diodes (LEDs), and relax the bit-resolution requirement in digital-to-analogue converters (DACs). However, it is accompanied by more signal distortions. In this study, a deep clipping noise mitigation scheme using iterative shrinkage/thresholding algorithm (ISTA) with three steps is proposed to improve bit error rate (BER) performance of the LED-based DCO-OFDM systems. In the first step, the estimated observation interference is eliminated from the received symbols to minimise the negative effect of channel noise. In the second step, two strategies are presented to generate the specified observations thus reduce the component of measurement noise in the whole observation vector. In the last step, combining the generalised cross validation and the estimation of observation interference, the appropriate regularisation parameter are calculated for ISTA to improve the robustness of the sparse recovery performance. They use simulations to show that the proposed scheme can correct the deep clipping noise with favourable reconstruction quality, which significantly improves the BER performance and therefore assist the LED non-linearity mitigation.

References

    1. 1)
      • 27. Tao, S., Boley, D., Zhang, S.: ‘Local linear convergence of ISTA and FISTA on the lasso problem’, SIAM J. Optim., 2016, 26, (16), pp. 313336.
    2. 2)
      • 6. Peng, L., Haese, S., Hélard, M.: ‘Frequency domain LED compensation for nonlinearity mitigation in DMT systems’, IEEE Photon. Technol. Lett., 2013, 25, (20), pp. 20222025.
    3. 3)
      • 23. Miramirkhani, F., Uysal, M.: ‘Channel modeling and characterization for visible light communications’, IEEE Photonics J., 2015, 7, (6), pp. 116.
    4. 4)
      • 10. Chen, H., Chung, K.C.: ‘A PTS technique with non-disjoint sub-block partitions in M-QAM OFDM systems’, IEEE Trans. Broadcast., 2018, 64, (1), pp. 146152.
    5. 5)
      • 16. Lim, D.W., Heo, S.J., No, J.S.: ‘An overview of peak-to-average power ratio reduction schemes for OFDM signals’, J. Commun. Netw-s KOR, 2009, 11, (3), pp. 229239.
    6. 6)
      • 25. Weiss, A., Yeredor, A., Shtaif, M.: ‘Iterative symbol recovery for power-efficient dc-biased optical OFDM systems’, J. Lightw. Technol., 2016, 34, (9), pp. 23312338.
    7. 7)
      • 18. Al-Safadi, E.B., Al-Naffouri, T.Y.: ‘Peak reduction and clipping mitigation in OFDM by augmented compressive sensing’, IEEE Trans. Signal Process., 2012, 60, (7), pp. 38343839.
    8. 8)
      • 4. Stepniak, G.: ‘DMT transmission in SI-POF with minimax channel shortening equalizer’, IEEE Photon. Technol. Lett., 2014, 26, (17), pp. 17501753.
    9. 9)
      • 22. Yang, L., Song, K., Siu, Y.M.: ‘Iterative clipping noise recovery of ofdm signals based on compressed sensing’, IEEE Trans. Broadcast., 2017, 63, (4), pp. 706713.
    10. 10)
      • 31. Liu, Q., Baxley, R.J., Ma, X., et al: ‘Error vector magnitude optimization for OFDM systems with a deterministic peak-to-average power ratio constraint’, IEEE J. Sel. Top. Signal Process., 2009, 3, (3), pp. 418429.
    11. 11)
      • 11. Wunder, G., Fischer, R., Boche, H., et al: ‘The PAPR problem in OFDM transmission: new directions for a long-lasting problem’, IEEE Signal Proc. Mag., 2013, 30, (6), pp. 130144.
    12. 12)
      • 24. Miao, P., Qi, C., Wu, L., et al: ‘Compressed sensing for clipping noise cancellation in DCO-OFDM systems based on observation interference mitigation’. Proc. Int. Conf. Wireless Communications and Signal Processing, Nanjing, China, October 2017, pp. 16.
    13. 13)
      • 12. Hou, J., Zhao, X., Gong, F.: ‘PAPR and PICR reduction of OFDM signals with clipping noise-based tone injection scheme’, IEEE Trans. Veh. Technol., 2017, 66, (1), pp. 222232.
    14. 14)
      • 28. Gholami, A., Sacchi, M.D.: ‘A fast and automatic sparse deconvolution in the presence of outliers’, IEEE Trans. Geosci. Remote., 2012, 50, (19), pp. 41054116.
    15. 15)
      • 9. Sudha, V., Syamkumar, M., Kumar, D.: ‘A low complexity modified SLM and companding based PAPR reduction in localized OFDMA’, Wirel. Pers. Commun., 2017, 96, (4), pp. 120.
    16. 16)
      • 17. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    17. 17)
      • 3. Chen, L., Krongold, B., Evans, J.: ‘Performance analysis for optical OFDM transmission in short-range IM/DD systems’, J. Lightw. Technol., 2012, 30, (7), pp. 974983.
    18. 18)
      • 8. Lu, H., Hong, Y., Chen, L.K., et al: ‘On the study of the relation between linear/nonlinear PAPR reduction and transmission performance for OFDM-based VLC systems’, Opt. Express, 2018, 26, (11), p. 13891.
    19. 19)
      • 14. Dimitrov, S., Sinanovic, S., Haas, H.: ‘Clipping noise in OFDM-based optical wireless communication systems’, IEEE Trans. Commun., 2012, 60, (4), pp. 10721081.
    20. 20)
      • 1. Karunatilaka, D., Zafar, F., Kalavally, V., et al: ‘LED based indoor visible light communications: state of the art’, IEEE Commun. Surv. Tutor., 2015, 17, (3), pp. 16491678.
    21. 21)
      • 29. Huri, N., Feder, M.: ‘Selecting the lasso regularization parameter via bayesian principles’. Proc. Int. Conf. Science of Electrical Engineering, Eilat, Israel, November 2016, pp. 15.
    22. 22)
      • 19. Mohammadnia-Avval, M., Ghassemi, A., Lampe, L.: ‘Compressive sensing recovery of nonlinearly distorted OFDM signals’. Proc. Int. Conf. on Communication, Kyoto, Japan, June 2011, pp. 15.
    23. 23)
      • 2. Zhang, G., Zhang, J., Hong, X., et al: ‘Low-complexity frequency domain nonlinear compensation for OFDM based high-speed visible light communication systems with light emitting diodes’, Opt. Express, 2017, 25, (4), pp. 37803794.
    24. 24)
      • 30. Daubechies, I., Defrise, M., De Mol, C.: ‘An iterative thresholding algorithm for linear inverse problems with a sparsity constraint’, Commun. Pur. Appl. Math., 2004, 57, (11), pp. 14131457.
    25. 25)
      • 20. Kim, K.H., Park, H., No, J.S.: ‘Clipping noise cancelation for OFDM systems using reliable observations based on compressed sensing’, IEEE Trans. Broadcast., 2015, 61, (1), pp. 111118.
    26. 26)
      • 13. Wu, Z.Y., Gao, Y.L., Wang, Z.K.: ‘Optimized DFT-spread OFDM based visible light communications with multiple lighting sources’, Opt. Express, 2017, 25, (22), pp. 26468.
    27. 27)
      • 5. Zhang, H., Yuan, Y., Xu, W.: ‘PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation’, IEEE Photon. Technol. Lett., 2014, 26, (17), pp. 17181721.
    28. 28)
      • 7. Miao, P., Wu, L., Chen, P., et al: ‘RCLED optimization and nonlinearity compensation in a polymer optical fiber DMT system’, Appl. Sci.-Basel, 2016, 6, (9), p. 260.
    29. 29)
      • 15. Azim, A.W., Guennec, Y.L., Maury, G.: ‘Decision-directed iterative methods for PAPR reduction in optical wireless OFDM systems’, Opt. Commun., 2017, 389, pp. 318330.
    30. 30)
      • 21. Yang, F., Gao, J., Liu, S.: ‘Priori aided compressed sensing-based clipping noise cancellation for ACO-OFDM systems’, IEEE Photon. Technol. Lett., 2016, 28, (19), pp. 20822085.
    31. 31)
      • 26. Stepniak, G., Siuzdak, J., Zwierko, P.: ‘Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE’, IEEE Photon. Technol. Lett., 2013, 25, pp. 15971600.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5222
Loading

Related content

content/journals/10.1049/iet-com.2018.5222
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address