http://iet.metastore.ingenta.com
1887

Resource allocation strategy against selfishness in cognitive radio ad-hoc network based on Stackelberg game

Resource allocation strategy against selfishness in cognitive radio ad-hoc network based on Stackelberg game

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Although the Cognitive Radio Ad-Hoc Network (CRAHN) is an effective technology to fully utilize the spectrum resource, the appearance of selfish nodes seriously reduces the communication efficiency of CRAHN and generates unfair resource competition. In this paper, a new incentive strategy is proposed to tackle selfish nodes in CRAHN. In our CRAHN model, the Secondary-User (SU) cooperates with the Primary-User (PU) in a spectrum leasing mode. Since PU can select multiple SUs as relays but only leases a common authorized spectrum usage time to SUs, the SU has the selfish tendency to reduce its power in relay task, which seriously damage the partnership between PU and SUs. We propose an evaluation coefficient to evaluate the behavior of each SU, where the evaluation coefficient establishes the reward and punishment mechanism to suppress the selfish behavior of SU in relay task. Meanwhile, in order to solve resource allocation problem, a Stackelberg game between PU and SUs is formulated and the optimal solutions are determined in a distributed manner. Simulation results validate that the incentive strategy can effectively suppress the selfish behavior of SUs, in the meantime, the total communication throughput is increased.

References

    1. 1)
      • 1. Mitola, J.I., Maguire, G.Q.J.: ‘Cognitive radio: making software radios more personal’, IEEE Pers. Commun. Mag., 1999, 6, (4), pp. 1318.
    2. 2)
      • 2. Peha, J.M.: ‘Approaches to spectrum sharing’, IEEE Commun. Mag., 2005, 43, (2), pp. 1012.
    3. 3)
      • 3. Guan, X., Wang, X., Ma, K., et al: ‘Spectrum leasing based on Nash bargaining solution in cognitive radio networks’, Telecommun. Syst., 2015, 28, (7), pp. 12501264.
    4. 4)
      • 4. He, S., Shin, D.H., Zhang, J., et al: ‘Full-view area coverage in camera sensor networks: dimension reduction and near-optimal solutions’, IEEE Trans. Veh. Technol., 2016, 65, (9), pp. 74487461.
    5. 5)
      • 5. Zhao, Q., Sadler, B.M.: ‘A survey of dynamic spectrum access’, IEEE Signal Process. Mag., 2007, 24, (3), pp. 7989.
    6. 6)
      • 6. Mosleh, S., Abouei, J., Aghabozorgi, M.R.: ‘Distributed opportunistic interference alignment using threshold-based beamforming in MIMO overlay cognitive radio’, IEEE Trans. Veh. Technol., 2014, 63, (8), pp. 37833793.
    7. 7)
      • 7. Gmira, S., Kobbane, A., Sabir, E.: ‘A new optimal hybrid spectrum access in cognitive radio: overlay-underlay mode’. IEEE Int. Conf. on Wireless Networks and Mobile Communications, Marrakech, Morocco, 2015, pp. 17.
    8. 8)
      • 8. Massin, R., Martret, C.J.L., Ciblat, P.: ‘A coalition formation game for distributed node clustering in mobile ad hoc networks’, IEEE Trans. Wirel. Commun., 2017, 16, (6), pp. 39403952.
    9. 9)
      • 9. Tan, X.J., Zhan, W.: ‘Cluster-based control information exchange in multi-channel ad hoc networks with spectrum heterogeneity’, IEEE Access, 2017, 5, (99), pp. 27202735.
    10. 10)
      • 10. Akyildiz, I.F., Lee, W.Y., Chowdhury, K.R.: ‘CRAHNs: cognitive radio ad hoc networks’, Ad Hoc Netw., 2009, 7, (5), pp. 810836.
    11. 11)
      • 11. Duy, T.N., Tho, L.-N.: ‘Distributed resource allocation for cognitive radio ad-hoc networks with spectrum-sharing constraints’. IEEE Global Telecommunications Conf. (GlobeCom 2010), Miami, Florida, USA, 2010, pp. 16.
    12. 12)
      • 12. Guan, Z., Melodia, T., Yuan, D.: ‘Distributed resource management for cognitive ad hoc networks with cooperative relays’, IEEE/ACM Trans. Netw., 2016, 24, (3), pp. 16751689.
    13. 13)
      • 13. Kalamkar, S.S., Jeyaraj, J.P., Banerjee, A.: ‘Resource allocation and fairness in wireless powered cooperative cognitive radio networks’, IEEE Trans. Commun., 2016, 64, (8), pp. 32463261.
    14. 14)
      • 14. Sanchez, S.M., Souza, R.D., Fernandez, E.M.G.: ‘Rate and energy efficient power control in a cognitive radio ad hoc network’, IEEE Signal Process. Lett., 2013, 20, (5), pp. 451454.
    15. 15)
      • 15. Balapuwaduge, I.A.M., Li, F.Y., Rajanna, A.: ‘Channel occupancy-based dynamic spectrum leasing in multichannel CRNs: strategies and performance evaluation’, IEEE Trans. Commun., 2016, 64, (3), pp. 13111328.
    16. 16)
      • 16. Fan, R., Zheng, Y., An, J.: ‘Dynamic pricing over multiple rounds of spectrum leasing in cognitive radio’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 17821789.
    17. 17)
      • 17. Ding, L., Melodia, T., Batalama, S.N.: ‘Distributed resource allocation in cognitive and cooperative ad hoc networks through joint routing, relay selection and spectrum allocation’, Comput. Netw., 2015, 83, pp. 315331.
    18. 18)
      • 18. Jayaweera, S.K., Li, T.: ‘Dynamic spectrum leasing in cognitive radio networks via primary-secondary user power control games’, IEEE Trans. Wirel. Commun., 2009, 8, (6), pp. 33003310.
    19. 19)
      • 19. Lopez, O.L.A., Sanchez, S.M., Mafra, S.B.: ‘Power control and relay selection in cognitive radio ad hoc networks using game theory’, IEEE Syst. J., 2018, 12, (3), pp. 28542865.
    20. 20)
      • 20. Abdalzaher, M.S., Seddik, K., Muta, O.: ‘Using Stackelberg game to enhance cognitive radio sensor networks security’, IET Commun., 2017, 11, (9), pp. 15031511.
    21. 21)
      • 21. Bayrakdar, M.E., Çalhan, A.: ‘Non-preemptive queueing model of spectrum handoff scheme based on prioritized data traffic in cognitive wireless networks’, ETRI J., 2017, 39, (4), pp. 558569.
    22. 22)
      • 22. How, K.C., Ma, M., Qin, Y.: ‘An altruistic differentiated service protocol in dynamic cognitive radio networks against selfish behaviors’, Comput. Netw., 2012, 56, (7), pp. 20682079.
    23. 23)
      • 23. Yan, M., Du, L., Huang, L.: ‘Game-theoretic approach against selfish attacks in cognitive radio networks’. IEEE Int. Conf. on Computer and Information Science, Sanya, China, 2011, pp. 5861.
    24. 24)
      • 24. Refaei, M.T., Srivastava, V., Dasilva, L.: ‘A reputation-based mechanism for isolating selfish nodes in ad hoc networks’. IEEE Int. Conf. on Mobile and Ubiquitous Systems: Networking and Services, San Diego, CA, USA, 2005, pp. 311.
    25. 25)
      • 25. Althunibat, S., Denise, B.J., Granelli, F.: ‘A punishment policy for spectrum sensing data falsification attackers in cognitive radio networks’. IEEE Vehicular Technology Conf., Vancouver, canada, 2014.
    26. 26)
      • 26. Althunibat, S., Denise, B.J., Granelli, F.: ‘Secure cluster-based cooperative spectrum sensing against malicious attackers’. IEEE Globecom Workshops, Austin, TX, USA, 2015.
    27. 27)
      • 27. Fu, Y., Zhu, Q.: ‘Joint optimization methods for nonconvex resource allocation problems of decode-and-forward relay-based OFDM networks’, IEEE Trans. Veh. Technol., 2016, 65, (7), pp. 49935006.
    28. 28)
      • 28. Sun, H., Laurenson, D.I., Wang, C.X.: ‘Computationally tractable model of energy detection performance over slow fading channels’, IEEE Commun. Lett., 2010, 14, (10), pp. 0926.
    29. 29)
      • 29. Win, M.Z., Winters, J.H.: ‘Analysis of hybrid selection/maximal-ratio combining in Rayleigh fading’, IEEE Transactions on Communications, 1999, 47, (12), pp. 17731776.
    30. 30)
      • 30. Zhou, X., Bai, B., Chen, W.: ‘Iterative antenna selection for decode-and-forward MIMO relay systems under a holistic power model’, IEEE Commun. Lett., 2014, 18, (12), pp. 22372240.
    31. 31)
      • 31. Hu, Y., Xu, C., Zhang, Y.: ‘Joint power and rate allocation for DF two-path relay systems’, IEEE Wirel. Commun. Lett., 2016, 5, (6), pp. 620623.
    32. 32)
      • 32. Rankov, B., Wittneben, A.: ‘Spectral efficient protocols for half-duplex fading relay channels’, IEEE J. Sel. Areas Commun., 2007, 25, (2), pp. 379389.
    33. 33)
      • 33. Xiao, M., Shroff, N.B., Chong, E.K.P.: ‘A utility-based power-control scheme in wireless cellular systems’, IEEE/ACM Trans. Netw., 2003, 11, (2), pp. 210221.
    34. 34)
      • 34. Leith, A., Kim, D.I., Alouini, M.S.: ‘Distributed optimization of a multisubchannel ad hoc cognitive radio network’, IEEE Trans. Veh. Technol., 2012, 61, (4), pp. 17861800.
    35. 35)
      • 35. Tan, C.W., ‘Convex optimization and Lagrange duality’, CS8292: Advanced Topics in Convex Optimization and its Applications, 2010.
    36. 36)
      • 36. Bertsekas, D.P.: ‘Nonlinear programming’, Belmont: Athena Sci., 1997, 48, (3), pp. 334334.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5166
Loading

Related content

content/journals/10.1049/iet-com.2018.5166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address