access icon free Complexity analysis of FDE receivers for massive MIMO block transmission systems

This study considers massive multiple-input multiple-output (m-MIMO) schemes employing orthogonal frequency division multiplexing (OFDM) or single-carrier with frequency-domain equalisation (SC-FDE) modulation, concerning an uplink transmission. The authors study the performance and complexity for both conventional zero forcing (ZF) and minimum mean squared error (MMSE) (which require the inversion of channel matrix) and iterative frequency domain equalisation receivers based on equal gain combining (EGC) and maximum ratio combining (MRC) concepts, that do not require matrix inversions. It is shown that, although matrix inversions are generally the more complex operations for relatively balanced systems (i.e. with similar number of transmit and receive antennas), this is not generally true for systems where the channel matrix is ‘very tall’ (i.e. much more receive than transmit antennas), at least in terms of the number of multiplications and sums. This means that the advantage on a reduced complexity of MRC/EGC-based equalisers with respect to ZF/MMSE is, in fact, limited. However, the performance advantages combined with the possibility of parallel receiver implementations, make those techniques particularly interesting for m-MIMO schemes, either employing OFDM or SC-FDE modulations.

Inspec keywords: least mean squares methods; radio receivers; OFDM modulation; MIMO communication; antenna arrays; channel estimation; receiving antennas; equalisers; transmitting antennas; frequency-domain analysis; diversity reception

Other keywords: massive MIMO block transmission systems; multiplications; OFDM; sums; orthogonal frequency division; frequency-domain equalisation modulation; channel matrix; single-carrier; MRC concepts; m-MIMO schemes; uplink transmission; maximum ratio combining concepts; ZF/MMSE; SC; FDE receivers; minimum mean squared error; relatively balanced systems; complexity analysis; transmit antennas; SC-FDE modulations; MRC/EGC-based equalisers; ZF error; parallel receiver implementations; complex operations; equal gain; matrix inversions; massive multiple-input multiple-output schemes

Subjects: Radio links and equipment; Interpolation and function approximation (numerical analysis); Communication channel equalisation and identification; Antenna arrays; Modulation and coding methods

References

    1. 1)
      • 27. Zhang, W., Ma, X., Gestner, B., et al: ‘Designing low-complexity equalizers for wireless systems’, IEEE Commun. Mag., 2009, 47, (1), pp. 5662.
    2. 2)
      • 24. Kobayashi, R.T., Ciriaco, F., Abrão, T.: ‘Performance and complexity analysis of sub-optimum MIMO detectors under correlated channel’. 2014 Int. Telecommunications Symp. (ITS), Sao Paulo, 2014, pp. 15.
    3. 3)
      • 14. Ribeiro, F., Dinis, R., Cercas, F., et al: ‘Receiver design for the uplink of base station cooperation systems employing SC-FDE modulations’, EURASIP J. Wirel. Commun. Netw., 2015, 2015, (1), pp. 117.
    4. 4)
      • 18. Torres, P., Charrua, L., Gusmao, A.: ‘On the uplink detection performance in MU-MIMO broadband systems with a large number of BS antennas’. Proc. of OFDM 2014,18th Int. OFDM Workshop 2014 (InOWo’14), Essen, Germany, 2014, pp. 18.
    5. 5)
      • 4. Sun, S., Rappaport, T.S., Heath, R.W., et al: ‘Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?’, IEEE Commun. Mag., 2014, 52, (12), pp. 110121.
    6. 6)
      • 11. Borges, D., Montezuma, P., Dinis, R.: ‘Low complexity MRC and EGC based receivers for SC-FDE modulations with massive MIMO schemes’. 2016 IEEE Global Conf. on Signal and Information Processing (GlobalSIP), Washington, DC, 2016, pp. 675678.
    7. 7)
      • 15. Kim, N., Lee, Y., Park, H.: ‘Performance analysis of MIMO system with linear MMSE receiver’, IEEE Trans. Wirel. Commun., 2008, 7, (11), pp. 44744478.
    8. 8)
      • 23. Dinis, R., Kalbasi, R., Falconer, D., et al: ‘Iterative layered space-time receivers for single-carrier transmission over severe time-dispersive channels’, IEEE Commun. Lett., 2004, 8, (9), pp. 579581.
    9. 9)
      • 20. Lu, L., Li, G.Y., Swindlehurst, A.L., et al: ‘An overview of massive MIMO: benefits and challenges’, IEEE J. Sel. Top. Signal Process., 2014, 8, (5), pp. 742758.
    10. 10)
      • 8. Rusek, F., Persson, D., Lau, B.K., et al: ‘Scaling up MIMO: opportunities and challenges with very large arrays’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 4060.
    11. 11)
      • 10. Dinis, R., Montezuma, P.: ‘Iterative receiver based on the EGC for massive MIMO schemes using SC-FDE modulations’, Electron. Lett., 2016, 52, (11), pp. 972974.
    12. 12)
      • 12. Bento, P., Silva, A.P.S., Dinis, R., et al: ‘Frequency-domain detection without matrix inversions for mm-wave communications with correlated massive MIMO channels’. IEEE Vehicular Technology Conf. – VTC-Spring, Sidney, 2017.
    13. 13)
      • 31. Golub, G.H., Van-Loan, C.F.: ‘Matrix computations’ (Johns Hopkins University Press, Baltimore, MD, USA, 1996, 3rd edn.).
    14. 14)
      • 30. Ren, J., Yoon, S.: ‘Soft-output signal detectors: performance comparisons in wireless MIMO communication systems’ in Deng, W. (ed.): ‘Future control and automation’ (Springer, Berlin, Heidelberg, Changsha, China, 2012), pp. 471478.
    15. 15)
      • 21. Adachi, F., Tomeba, H., Takedar, K.: ‘Frequency-domain equalization for broadband single-carrier multiple access’, IEICE Trans. Commun., 2009, 92-B, (5), pp. 14411456.
    16. 16)
      • 34. Dinis, R., Souto, N., Silva, J., et al: ‘On the use of implicit pilots for channel estimation with OFDM modulations’. 2007 IEEE 66th Vehicular Technology Conf., Baltimore, MD, 2007, pp. 10771081.
    17. 17)
      • 26. Guerra, D., Fukuda, R.M., Kobayashi, R.T., et al: ‘Efficient detectors for MIMO-OFDM systems under spatial correlation antenna arrays’, ETRI J., 2018, 40, (5), pp. 570581.
    18. 18)
      • 1. Katalinic, A., Nagy, R., Zentner, R.: ‘Benefits of MIMO systems in practice: increased capacity, reliability and spectrum efficiency’. Proc. Electronics in Marine (ELMAR, 2006), Zadar, 2006, pp. 263266.
    19. 19)
      • 13. Spencer, Q.H., Swindlehurst, A.L., Haardt, M.: ‘Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels’, IEEE Trans. Signal Process., 2004, 52, (2), pp. 461471.
    20. 20)
      • 5. Swindlehurst, A.L., Ayanoglu, E., Heydari, P., et al: ‘Millimeter-wave massive MIMO: the next wireless revolution?’, IEEE Commun. Mag., 2014, 52, (9), pp. 5662.
    21. 21)
      • 2. Boccardi, F., Heath, R.W., Lozano, A., et al: ‘Five disruptive technology directions for 5G’, IEEE Commun. Mag., 2014, 52, (2), pp. 7480.
    22. 22)
      • 3. Rangan, S., Rappaport, T.S., , ‘Erkip, E.: ‘Millimeter-wave cellular wireless networks: potentials and challenges’, Proc. IEEE, 2014, 102, (3), pp. 366385.
    23. 23)
      • 29. Hunger, R.: ‘Floating point operations in matrix-vector calculus’ (Munich University of Technology, Munich, Germany, 2007), V1.3.
    24. 24)
      • 33. Souto, N., Dinis, R., Silva, J.C.: ‘Impact of channel estimation errors on SC-FDE systems’, IEEE Trans. Commun., 2014, 62, (5), pp. 15301540.
    25. 25)
      • 19. Luo, F.L., Zhang, C.: ‘Signal processing for 5G: algorithms and implementations’ (Wiley-IEEE Press, Chichester, UK, 2016).
    26. 26)
      • 7. Björnson, E., Larsson, E.G., Marzetta, T.L.: ‘Massive MIMO: ten myths and one critical question’, IEEE Commun. Mag., 2016, 54, (2), pp. 114123.
    27. 27)
      • 25. Miridakis, N.I., Vergados, D.D.: ‘Complexity analysis of a hybrid threshold-based zf-mmse equalizer for sic-based mimo-ofdm receivers’. Proc. of the Int. Conf. on Wireless Information Networks and Systems, Seville, 2011, pp. 109112.
    28. 28)
      • 16. Xu, C., Hu, Y., Liang, C., et al: ‘Massive mimo, non-orthogonal multiple access and interleave division multiple access’, IEEE Access, 2017, 5, pp. 1472814748.
    29. 29)
      • 22. da Silva, M.M., Correia, A., Dinis, R., et al: ‘Transmission techniques for 4G systems’ (CRC Press, Inc., Boca Raton, FL, USA, 2012).
    30. 30)
      • 28. Chang, R.Y., Chung, W.: ‘Low-complexity MIMO detection based on post-equalization subspace search’, IEEE Trans. Veh. Technol., 2012, 61, (1), pp. 375380.
    31. 31)
      • 6. Larsson, E.G., Edfors, O., Tufvesson, F., et al: ‘Massive MIMO for next generation wireless systems’, IEEE Commun. Mag., 2014, 52, (2), pp. 186195.
    32. 32)
      • 9. Biglieri, E., Calderbank, R., Constantinides, A., et al: ‘MIMO wireless communications’ (Cambridge University Press, New York, NY, USA, 2007).
    33. 33)
      • 17. Ge, Z., Haiyan, W.: ‘Linear precoding design for massive MIMO based on the minimum mean square error algorithm’, EURASIP J. Embedded Syst., 2017, 2017, (1), p. 20.
    34. 34)
      • 32. Ouni, N., Bouallegue, R.: ‘‘Performance and complexity analysis of a reduced iterations LLL algorithm’, Int. J. Comput. Netw. Commun. (IJCNC), 2016, 8, (3), pp. 123135.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5156
Loading

Related content

content/journals/10.1049/iet-com.2018.5156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading