access icon free Efficient beam allocation strategy for statistical beamforming-based massive multiple-input–multiple-output downlink systems

This study focuses on an efficient fairness aware beam allocation strategy which is based on user position approach. The proposed algorithm is efficient to cope with the effects of user position uncertainties and imperfect channel state information (CSI). It allocates beam to individual users based on directivity and user position with the objective of serving many users simultaneously. On the basis of the user position, individual data rate requirements are also considered in the proposed scheme which is very much important for practical systems thereby considering the fairness issue amongst the users. The proposed scheme is best suited for a system with covariance-based beamforming, where statistical CSI is highly preferred under high dense deployments and the channel coherence time is short. It also requires low average feedback load with less multiuser interference and is of low complexity compared with the searching-based beam allocation strategy. The simulation results are given to show the advantage of the proposed beam allocation on comparing with the prevailing schemes.

Inspec keywords: statistical analysis; radiofrequency interference; array signal processing; MIMO communication; resource allocation

Other keywords: imperfect channel state information; massive multiple-input–multiple-output downlink systems; statistical CSI; channel coherence time; statistical beamforming; multiuser interference; user position uncertainties; fairness aware beam allocation; covariance-based beamforming; feedback load; individual data rate requirements

Subjects: Other topics in statistics; Radio links and equipment; Signal processing and detection; Electromagnetic compatibility and interference

References

    1. 1)
      • 14. Xia, M., Wu, Y.K., Aissa, S.: ‘Non-orthogonal opportunistic beam forming: performance analysis and implementation’, IEEE Trans. Wirel. Commun., 2012, 11, (4), pp. 14241433.
    2. 2)
      • 18. Ciuonzo, D., Rossi, P.S., Dey, S.: ‘Massive MIMO channel-aware decision fusion’, IEEE Trans. Signal Process., 2015, 63, (3), pp. 604619.
    3. 3)
      • 16. Choi, J.: ‘Opportunistic beam forming with single beamfomring matrix for virtual antenna array’, IEEE Trans. Veh. Technol., 2011, 60, (3), pp. 872881.
    4. 4)
      • 1. Lu, L., Li, G.Y., Lee Swindle Hurst, A., et al: ‘An overview of massive MIMO: benefits and challenges’, IEEE. J. Sel. Top. Signal Process., 2014, 8, (5), pp. 742758.
    5. 5)
      • 19. Shirazinia, A., Dey, S., Ciuonzo, D., et al: ‘Massive MIMO for decentralized estimation of a correlated source’, IEEE Trans. Signal Process., 2016, 64, (10), pp. 24992512.
    6. 6)
      • 27. Wang, J.Y., Zhu, H., Dai, L., et al: ‘Low-complexity beam allocation for switched-beam based multiuser massive MIMO systems’, IEEE Trans. Commun., 2016, 15, (12), pp. 82368248.
    7. 7)
      • 7. Farsakh, C., Nossek, J.A.: ‘Spatial covariance based downlink beam forming in an SDMA mobile radio system’, IEEE Trans. Commun., 1998, 46, (11), pp. 14971506.
    8. 8)
      • 22. Li, X., Jin, S., Suraweera, H., et al: ‘Statistical 3D beam forming for large-scale MIMO downlink systems over Rician fading channels’, IEEE Trans. Commun., 2016, 64, (4), pp. 15291543.
    9. 9)
      • 25. Hansen, R.C.: ‘Phased array antennas’ (Wiley, New York, 2009, 2nd edn.), pp. 317397.
    10. 10)
      • 12. Choi, W., Forenza, A., Andrews, J.G., et al: ‘Opportunistic space-division multiple access with beam selection’, IEEE Trans. Commun., 2007, 55, (12), pp. 23712380.
    11. 11)
      • 23. Dimic, G., Sidiropoulos, N.D.: ‘On downlink beam forming with greedy user selection: performance analysis and a simple new algorithm’, IEEE Trans. Signal Process., 2005, 53, (10), pp. 38573868.
    12. 12)
      • 24. Shin, H., Lee, J.H.: ‘Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering and keyhole’, IEEE Trans. Inf. Theory, 2003, 49, (10), pp. 26362647.
    13. 13)
      • 26. Akdeniz, M.R., Liu, Y., Samimi, M.K., et al: ‘Millimeter wave channel modeling and cellular capacity evaluation’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 11641179.
    14. 14)
      • 8. Li, X., Zhou, L., Jin, S., et al: ‘Multi-user multiple input single-output downlink transmission systems exploiting statistical channel state information’, IET Commun., 2012, 6, (18), pp. 31143121.
    15. 15)
      • 13. Lu, P., Yang, H.-C.: ‘A simple and efficient user-scheduling strategy for RUB-based multiuser MIMO systems and its sum-rate analysis’, IEEE Trans. Veh. Technol., 2007, 58, (9), pp. 48604867.
    16. 16)
      • 6. Huang, Y., Yang, L., Bengtsson, M., et al: ‘Exploiting long term channel correlation in limited feedback SDMA through channel phase codebook’, IEEE Trans. Signal Process., 2011, 59, (3), pp. 12171228.
    17. 17)
      • 11. Kwon, H., Jang, E.W., Cioffi, J.M.: ‘Predetermined power allocation for opportunistic beam forming with limited feedback’, IEEE Trans. Wirel. Commun., 2011, 10, (1), pp. 8490.
    18. 18)
      • 2. Rusek, F., Persson, D., Lau, B.K., et al: ‘Scaling up MIMO: opportunities and challenges with very large arrays’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 4060.
    19. 19)
      • 3. Ngo, H.Q., Larsson, E.G., Marzetta, T.L.: ‘Energy and spectral efficiency of very large multiuser MIMO systems’, IEEE Trans. Commun., 2013, 61, (4), pp. 14361449.
    20. 20)
      • 5. Yin, H., Gesbert, D., Filippou, M., et al: ‘A coordinated approach to channel estimation in large-scale multiple-antenna systems’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 264273.
    21. 21)
      • 17. Rappaport, T.S., Health, R., Daniels, R., et al: ‘Millimetre wave wireless communications’ (Pearson Education, Upper Saddle River, USA, 2nd edn.), pp. 500563.
    22. 22)
      • 10. Zhang, C., Huang, Y., Jing, Y., et al: ‘Sum-rate analysis for massive MIMO downlink with joint statistical beam forming and user scheduling’, IEEE Trans. Wirel. Commun., 2017, 16, (4), pp. 21812194.
    23. 23)
      • 20. Jiang, F., Chen, J., Lee Swindlehurst, A., et al: ‘Massive MIMO for wireless sensing with a coherent multiple access channel’, IEEE Trans. Signal Process., 2015, 63, (12), pp. 30053017.
    24. 24)
      • 21. Ciuonzo, D., Rossi, P.S., Dey, S.: ‘Massive MIMO meets decision fusion: decode-and-fuse vs. Decode-then-fuse’. IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, Spain, 2014.
    25. 25)
      • 9. Jin, S., Tan, W., Matthaiou, M., et al: ‘Statistical eigenmode transmission for the MU-MIMO downlink in Rician fading’, IEEE Trans. Wirel. Commun., 2015, 14, (12), pp. 66506663.
    26. 26)
      • 15. Vicario, J.L., Bosisio, R., Anton-Haro, C., et al: ‘Beam selection strategies for orthogonal random beam forming in sparse networks’, IEEE Trans. Wirel. Commun., 2008, 7, (9), pp. 33853396.
    27. 27)
      • 4. Adhikary, A., Nam, J., Ahn, J.Y., et al: ‘Joint spatial division and multiplexing: the large-scale array regime’, IEEE Trans. Inf. Theory, 2013, 59, (10), pp. 64416463.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5120
Loading

Related content

content/journals/10.1049/iet-com.2018.5120
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading