Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Channel equalisation and data detection for SEFDM over frequency selective fading channels

Spectrally efficient frequency division multiplexing (SEFDM) has been recognised as a promising multi-carrier technology since it can offer a higher spectral efficiency than orthogonal frequency division multiplexing (OFDM). In this study, the authors provide a framework for SEFDM transceiver design and investigate the techniques of channel equalisation and data detection of SEFDM over frequency selective fading scenarios. Specifically, they first demonstrate through mathematical analysis that SEFDM with the proposed frequency-domain equalisation scheme can benefit from the frequency diversity, and thus, performs more robust to the frequency selective fading environment than OFDM. To effectively mitigate inter-carrier interference raised by the non-orthogonality between sub-carriers of SEFDM, they then propose a low-computational data detection scheme based on the Viterbi principle and maximum a posteriori criterion. The proposed detector can provide an indistinguishable performance from the maximum likelihood detection using sphere decoding while entailing a much lower computation. Numerical results validate the superiority of SEFDM to OFDM over frequency selective fading channels.

References

    1. 1)
      • 7. Wang, Y., Zhou, Y., Gui, T., et al: ‘Efficient MMSE-SQRD-based MIMO decoder for SEFDM-based 2.4-Gb/s-spectrum-compressed WDM VLC system’, IEEE Photon. J., 2016, 8, (4), pp. 19.
    2. 2)
      • 26. C. M. Committee: ‘COST 207: Digital Land Mobile Radio Communications’. Final Report, 1989.
    3. 3)
      • 20. Isam, S., Darwazeh, I.: ‘Simple DSP-IDFT techniques for generating spectrally efficient FDM signals’. IEEE 2010 7th Int. Symp. on Communication Systems Networks and Digital Signal Processing (CSNDSP), Newcastle, UK, 2010, pp. 2024.
    4. 4)
      • 23. Eng, T., Kong, N., Milstein, L.B.: ‘Comparison of diversity combining techniques for Rayleigh-fading channels’, IEEE Trans. Commun., 1996, 44, (9), pp. 11171129.
    5. 5)
      • 25. Wang, X., Ho, P., Wu, Y.: ‘Robust channel estimation and ISI cancellation for OFDM systems with suppressed features’, IEEE J. Sel. Areas Commun., 2005, 23, (5), pp. 963972.
    6. 6)
      • 5. Xiang, W., Zheng, K., Shen, X.S.: ‘5G mobile communications’ (Springer, 2016).
    7. 7)
      • 1. Mazo, J.E.: ‘Faster-than-Nyquist signaling’, Bell Syst. Tech. J., 1975, 54, (8), pp. 14511462.
    8. 8)
      • 27. Cho, Y.S., Kim, J., Yang, W.Y., et al: ‘MIMO-OFDM wireless communications with MATLAB’ (John Wiley & Sons, USA, 2010).
    9. 9)
      • 12. Muquet, B., Wang, Z., Giannakis, G., et al: ‘Cyclic prefixing or zero padding for wireless multicarrier transmissions?’, IEEE Trans. Commun., 2002, 50, (12), pp. 21362148.
    10. 10)
      • 6. Huang, J., Sui, Q., Li, Z., et al: ‘Experimental demonstration of 16-QAM DD-SEFDM with cascaded BPSK iterative detection’, IEEE Photon. J., 2016, 8, (3), pp. 19.
    11. 11)
      • 2. Hamamura, M., Tachikawa, S.: ‘Bandwidth efficiency improvement for multi-carrier systems’. 2004 IEEE 15th Int. Symp. on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No. 04TH8754), Barcelona, ES, 2004.
    12. 12)
      • 8. Weinstein, S., Ebert, P.: ‘Data transmission by frequency-division multiplexing using the discrete Fourier transform’, IEEE Trans. Commun., 1971, 19, (5), pp. 628634.
    13. 13)
      • 13. Ding, Y., Davidson, T.N., Luo, Z.-Q., et al: ‘Minimum BER block precoders for zero-forcing equalization’, IEEE Trans. Signal Process., 2003, 51, (9), pp. 24102423.
    14. 14)
      • 18. Heydari, S.J., Naeiny, M.F., Marvasti, F.: ‘Iterative detection with soft decision in spectrally efficient FDM systems’, arXiv preprint arXiv:1304.4003.
    15. 15)
      • 15. Isam, S., Darwazeh, I.: ‘Robust channel estimation for spectrally efficient FDM system’. 2012 19th Int. Conf. on Telecommunications (ICT)., Jounieh, Lebanon, April 2012.
    16. 16)
      • 24. Meyer, C.: ‘Matrix analysis and applied linear algebra’ (Society for Industrial and Applied Mathematics, USA, 2000).
    17. 17)
      • 10. Bailey, D.H., Swarztrauber, P.N.: ‘The fractional Fourier transform and applications’, SIAM Rev., 1991, 33, (3), pp. 389404.
    18. 18)
      • 3. Xu, T., Darwazeh, I.: ‘Bandwidth compressed carrier aggregation’. 2015 IEEE Int. Conf. on Communication Workshop (ICCW), London, UK, June 2015.
    19. 19)
      • 16. Chorti, A., Kanaras, I., Rodrigues, M.R., et al: ‘Joint channel equalization and detection of spectrally efficient FDM signals’. 21st Annual IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, Istanbul, TR, September 2010.
    20. 20)
      • 9. Kanaras, I., Chorti, A., Rodrigues, M.R.D., et al: ‘Spectrally efficient FDM signals: band width gain at the expense of receiver complexity’. 2009 IEEE Int. Conf. on Communications, Dresden, Germany, June 2009.
    21. 21)
      • 4. Rainnie, D., Feng, Y., Bajcsy, J.: ‘On capacity merits of spectrally efficient FDM’. 2015 IEEE Military Communications Conf. (MILCOM 2015), Tampa, FL, USA, October 2015.
    22. 22)
      • 21. Morgan, D.R.: ‘Analysis and realization of an exponentially-decaying impulse response model for frequency-selective fading channels’, IEEE Signal Process. Lett., 2008, 15, pp. 441444.
    23. 23)
      • 22. Yu, B., Zhang, S., Dai, X., et al: ‘Iterative decoder for coded SEFDM systems’. 2017 IEEE 17th Int. Conf. on Communication Technology (ICCT), Chengdu, China, 2017, pp. 145150.
    24. 24)
      • 19. Yu, B., Zhang, H., Dai, X.: ‘A low-complexity demodulation technique for spectrally efficient FDM systems using decision-feedback’, IET Commun., 2017, 11, (15), pp. 23862392.
    25. 25)
      • 17. Hassibi, B., Vikalo, H.: ‘On the sphere-decoding algorithm I. Expected complexity’, IEEE Trans. Signal Process., 2005, 53, (8), pp. 28062818.
    26. 26)
      • 11. Clegg, R., Isam, S., Kanaras, I., et al: ‘A practical system for improved efficiency in frequency division multiplexed wireless networks’, IET Commun., 2012, 6, (4), p. 449.
    27. 27)
      • 14. Wang, J., Song, J., Yang, Z.-X., et al: ‘Frames theoretic analysis of zero-padding OFDM over deep fading wireless channels’, IEEE Trans. Broadcast., 2006, 52, (2), pp. 252260.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5114
Loading

Related content

content/journals/10.1049/iet-com.2018.5114
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address