access icon free Performance of two-way AF relaying with energy harvesting over Nakagami-m fading channels

In this study, the authors consider a two-way amplify-and-forward communication system over Nakagami-m fading environments, where an intermediate relay node harvests energy from its surrounding radio frequency environment using an energy harvesting technique. They propose a novel derivation approach to obtain exact expressions for user outage probability, system outage probability, and upper bound on system ergodic capacity per unit bandwidth over Nakagami-m fading channels. Monte–Carlo simulation results under Matlab software packages match the proposed analytical analyses confirming the correctness of the proposed derivation approach and the advantage of the system under consideration.

Inspec keywords: amplify and forward communication; energy harvesting; Monte Carlo methods; probability; telecommunication power management; Nakagami channels; channel capacity

Other keywords: energy harvesting technique; intermediate relay node; system outage probability; two-way amplify-and-forward communication system; upper bound; novel derivation approach; user outage probability; analytical analyses; radio frequency environment; Nakagami-m fading channels; Monte–Carlo simulation; system ergodic capacity per unit bandwidth; Matlab software packages

Subjects: Monte Carlo methods; Radio links and equipment; Energy harvesting; Telecommunication systems (energy utilisation); Energy harvesting; Probability theory, stochastic processes, and statistics

References

    1. 1)
      • 31. Deng, Y., Wang, L., Elkashlan, M., et al: ‘Ergodic capacity of cognitive TAS/GSC relaying in Nakagami-m fading channels’. 2014 IEEE Int. Conf. on Communications (ICC), Sydney, NSW, Australia, August 2014, pp. 53485353.
    2. 2)
      • 15. Tutuncuoglu, K., Varan, B., Yener, A.: ‘Optimum transmission policies for energy harvesting two-way relay channels’. 2013 IEEE Int. Conf. on Communications Workshops (ICC), Budapest, Hungary, June 2013, pp. 586590.
    3. 3)
      • 13. Wen, Z., Wang, S., Fan, C., et al: ‘Joint transceiver and power splitter design over two-way relaying channel with lattice codes and energy harvesting’, IEEE Commun. Lett., 2014, 18, (11), pp. 20392042.
    4. 4)
      • 2. Grover, P., Sahai, A.: ‘Shannon meets Tesla: wireless information and power transfer’. Proc. 2010 IEEE Int. Symp. on Information Theory, Austin, TX, USA, June 2010, pp. 23632367.
    5. 5)
      • 10. Xing, P., Liu, J., Zhai, C., et al: ‘Multipair two-way full-duplex relaying with massive array and power allocation’, IEEE Trans. Veh. Technol., 2017, 66, (10), pp. 89268939.
    6. 6)
      • 22. NguyenHuu, P., HoVan, K., PhamThiDan, N., et al: ‘Outage probability analysis of half-duplex energy harvesting AF two-way relaying over Nakagami-m fading’. 2017 Int. Conf. on Advanced Technologies for Communications (ATC), Quy Nhon, Vietnam, October 2017, pp. 9296.
    7. 7)
      • 19. Liu, Y., Wang, L., Elkashlan, M., et al: ‘Two-way relay networks with wireless power transfer: design and performance analysis’, IET Commun., 2016, 10, (14), pp. 18101819.
    8. 8)
      • 8. Ding, Z., Poor, H.V.: ‘Cooperative energy harvesting networks with spatially random users’, IEEE Signal Process. Lett., 2013, 20, (12), pp. 12111214.
    9. 9)
      • 9. Wang, X., Liu, J., Zhai, C.: ‘Wireless power transfer-based multi-pair two-way relaying with massive antennas’, IEEE Trans. Wirel. Commun., 2017, 16, (11), pp. 76727684.
    10. 10)
      • 29. Gradshteyn, I.S., Ryzhik, I.M., Jeffrey, A., et al: ‘Table of integrals, series and products’ (Elsevier, Amsterdam, Boston, 2007, 7th edn.).
    11. 11)
      • 17. Fredj, K.B., Aissa, S.: ‘Performance of spectrum-sharing constrained two-way relaying’. 2014 IEEE Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, April 2014, pp. 845850.
    12. 12)
      • 25. Ding, H., Ge, J., da Costa, D.B., et al: ‘Outage analysis for multiuser two-way relaying in mixed Rayleigh and Rician fading’, IEEE Commun. Lett., 2011, 15, (4), pp. 410412.
    13. 13)
      • 20. Zhang, C., Du, H., Ge, J.: ‘Energy-efficient power allocation in energy harvesting two-way AF relay systems’, IEEE Access, 2017, 5, pp. 36403645.
    14. 14)
      • 26. Ikki, S.S., Aissa, S.: ‘Performance analysis of two-way amplify-and-forward relaying in the presence of co-channel interferences’, IEEE Trans. Commun., 2012, 60, (4), pp. 933939.
    15. 15)
      • 16. Tutuncuoglu, K., Yener, A.: ‘Multiple access and two-way channels with energy harvesting and bi-directional energy cooperation’. 2013 Information Theory and Applications Workshop (ITA), San Diego, CA, USA, February 2013, pp. 18.
    16. 16)
      • 5. Zhou, X., Zhang, R., Ho, C.K.: ‘Wireless information and power transfer: architecture design and rate-energy tradeoff’, IEEE Trans. Commun., 2013, 61, (11), pp. 47544767.
    17. 17)
      • 30. Duong, T.Q., Hoang, L.N., Bao, V.N.Q.: ‘On the performance of two-way amplify-and-forward relay networks’, IEICE Trans. Commun., 2009, E92-B, (12), pp. 39573959.
    18. 18)
      • 7. Nasir, A.A., Zhou, X., Durrani, S., et al: ‘Relaying protocols for wireless energy harvesting and information processing’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36223636.
    19. 19)
      • 14. Tutuncuoglu, K., Varan, B., Yener, A.: ‘Energy harvesting two-way half-duplex relay channel with decode-and-forward relaying: optimum power policies’. 2013 18th Int. Conf. on Digital Signal Processing (DSP), Fira, Greece, July 2013, pp. 16.
    20. 20)
      • 21. Van, N.T.P., Hasan, S.F., Gui, X., et al: ‘Three-step two-way decode and forward relay with energy harvesting’, IEEE Commun. Lett., 2017, 21, (4), pp. 857860.
    21. 21)
      • 23. Joshi, S., Mallik, R.K.: ‘Analysis of dedicated and shared device-to-device communication in cellular networks over Nakagami-m fading channels’, IET Commun., 2017, 11, (10), pp. 16001609.
    22. 22)
      • 11. Li, D., Shen, C., Qiu, Z.: ‘Two-way relay beamforming for sum-rate maximization and energy harvesting’. 2013 IEEE Int. Conf. on Communications (ICC), Budapest, Hungary, June 2013, pp. 31153120.
    23. 23)
      • 18. Chen, Z., Xia, B., Liu, H.: ‘Wireless information and power transfer in two-way amplify-and-forward relaying channels’. 2014 IEEE Global Conf. on Signal and Information Processing (GlobalSIP), Atlanta, GA, USA, December 2014, pp. 168172.
    24. 24)
      • 27. Zhang, Z., Ma, Z., Xiao, M., et al: ‘Two-timeslot two-way full-duplex relaying for 5G wireless communication networks’, IEEE Trans. Commun., 2016, 64, (7), pp. 28732887.
    25. 25)
      • 1. Liu, V., Parks, A., Talla, V., et al: ‘Ambient backscatter: wireless communication out of thin air’, SIGCOMM Comput. Commun. Rev., 2013, 43, (4), pp. 3950. Available at http://doi.acm.org/10.1145/2534169.2486015.
    26. 26)
      • 6. Fang, Z., Song, T., Li, T.: ‘Energy harvesting for two-way OFDM communications under hostile jamming’, IEEE Signal Process. Lett., 2015, 22, (4), pp. 413416.
    27. 27)
      • 12. Mekikis, P.V., Lalos, A.S., Antonopoulos, A., et al: ‘Wireless energy harvesting in two-way network coded cooperative communications: a stochastic approach for large scale networks’, IEEE Commun. Lett., 2014, 18, (6), pp. 10111014.
    28. 28)
      • 4. Varshney, L.R.: ‘Transporting information and energy simultaneously’. 2008 IEEE Int. Symp. on Information Theory, Toronto, ON, Canada, July 2008, pp. 16121616.
    29. 29)
      • 3. Krikidis, I., Timotheou, S., Nikolaou, S., et al: ‘Simultaneous wireless information and power transfer in modern communication systems’, IEEE Commun. Mag., 2014, 52, (11), pp. 104110.
    30. 30)
      • 24. Rankov, B., Wittneben, A.: ‘Spectral efficient protocols for half-duplex fading relay channels’, IEEE J. Sel. Areas Commun., 2007, 25, (2), pp. 379389.
    31. 31)
      • 28. Krikidis, I., Suraweera, H.A., Smith, P.J., et al: ‘Full-duplex relay selection for amplify-and-forward cooperative networks’, IEEE Trans. Wirel. Commun., 2012, 11, (12), pp. 43814393.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5090
Loading

Related content

content/journals/10.1049/iet-com.2018.5090
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading