access icon free Performance of NOMA-based coordinated direct and relay transmission using dynamic scheme

In this study, non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission (CDRT) is considered, where a base station (BS) directly communicates with two cell-centre users (CCUs) while communicating with a cell-edge user (CEU) via a relay. A novel dynamic scheme is proposed, in which the CCU close to the BS will act as a relay to assist the CEU in the second phase if it can obtain the prior information of the CEU in advance, otherwise it will switch to the receiving mode. To evaluate the system performance of the proposed scheme, the closed-form expressions of the outage probability, diversity order and ergodic sum rate (SR) are, respectively, derived. Simulation results demonstrate that the proposed scheme attains greater diversity order for the CEU as well as superior outage performance without performance loss of the ergodic SR, compared with conventional one in NOMA-based CDRT. In addition, a suboptimal power allocation (SPA) for this dynamic scheme is put forward, for which the closed-form expression is also obtained. It is also indicated that the presented SPA for dynamic scheme achieves near-optimal ergodic SR performance at high SNR region.

Inspec keywords: diversity reception; probability; multi-access systems; telecommunication network reliability; cellular radio; relay networks (telecommunication)

Other keywords: outage probability; suboptimal power allocation; dynamic scheme; nonorthogonal multiple access; cell-centre users; NOMA-based coordinated direct and relay transmission; cell-edge user; ergodic sum rate; CDRT; base station; near-optimal ergodic SR performance; closed-form expression; system performance evaluation; SPA; outage performance; CEU; diversity order; BS

Subjects: Multiple access communication; Mobile radio systems; Other topics in statistics; Reliability

References

    1. 1)
      • 22. Liu, X., Liu, Y., Wang, X., et al: ‘Highly efficient 3D resource allocation techniques in 5G for NOMA enabled massive MIMO and relaying systems’, IEEE J. Sel. Areas Commun., 2017, 35, (12), pp. 27852797.
    2. 2)
      • 7. Do, N.T., Costa, D.B.D., Duong, T.Q., et al: ‘A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT’, IEEE Commun. Lett., 2017, 21, (3), pp. 664667.
    3. 3)
      • 17. Kader, M.F., Shin, S.Y.: ‘Cooperative relaying using space-time block coded non-orthogonal multiple access’, IEEE Trans. Veh. Technol., 2017, 66, (7), pp. 58945903.
    4. 4)
      • 1. Dai, L.L., Wang, B.C., Yuan, Y.F., et al: ‘Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends’, IEEE Commun. Mag., 2015, 53, (9), pp. 7481.
    5. 5)
      • 30. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions with formulas, graphs, and mathematical tables’ (Dover Publications, New York, 1970, 9th edn.).
    6. 6)
      • 21. Wan, D.H., Wen, M.W., Ji, F., et al: ‘Cooperative NOMA systems with partial channel state information over Nakagami-m fading channels’, IEEE Trans. Commun., 2018, 66, (3), pp. 947958.
    7. 7)
      • 23. Zhang, Q., Liang, Z.J., Li, Q.Z., et al: ‘Buffer-aided non-orthogonal multiple access relaying systems in Rayleigh fading channels’, IEEE Trans. Commun., 2017, 65, (1), pp. 95106.
    8. 8)
      • 18. Men, J.J., Ge, J.H.: ‘Performance analysis of non-orthogonal multiple access in downlink cooperative network’, IET Commun., 2015, 9, (18), pp. 22672273.
    9. 9)
      • 6. Liu, Y.W., Ding, Z.G., Elkashlan, M., et al: ‘Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 938953.
    10. 10)
      • 25. Sun, F., Carvalho, E.D., Popovski, P., et al: ‘Coordinated direct and relay transmission with linear non-regenerative relay beamforming’, IEEE Signal Process. Lett., 2012, 19, (10), pp. 680683.
    11. 11)
      • 8. Qian, L.P., Wu, Y., Zhou, H.B., et al: ‘Dynamic cell association for non-orthogonal multiple-access V2S networks’, IEEE J. Sel. Areas Commun., 2017, 35, (10), pp. 23422356.
    12. 12)
      • 12. Liu, Y., Pan, G.F., Zhang, H.T., et al: ‘On the capacity comparison between MIMO-NOMA and MIMO-OMA’, IEEE Access, 2016, 4, (6), pp. 21232129.
    13. 13)
      • 10. Chen, B.C., Chen, Y., Chen, Y.F., et al: ‘A novel spectrum sharing scheme assisted by secondary NOMA relay’, IEEE Wirel. Commun. Lett., 2018, PP, (99), pp. 11.
    14. 14)
      • 13. Ding, Z.G., Peng, M.G., Poor, H.V.: ‘Cooperative non-orthogonal multiple access in 5G systems’, IEEE Commun. Lett., 2015, 19, (8), pp. 14621465.
    15. 15)
      • 29. Chatzigeorgiou, I.: ‘Bounds on the lambert function and their application to the outage analysis of user cooperation’, IEEE Commun. Lett., 2013, 17, (8), pp. 15051508.
    16. 16)
      • 28. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series and products’ (Academic Press, New York, 2000, 6th edn.).
    17. 17)
      • 15. Kim, J.B., Lee, I.H.: ‘Capacity analysis of cooperative relaying systems using non-orthogonal multiple access’, IEEE Commun. Lett., 2015, 19, (11), pp. 19491952.
    18. 18)
      • 19. Men, J.J., Ge, J.H., Zhang, C.S.: ‘Performance analysis of nonorthogonal multiple access for relaying networks over Nakagami-m fading channels’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 12001208.
    19. 19)
      • 14. Choi, J.: ‘Non-orthogonal multiple access in downlink coordinated two-point systems’, IEEE Commun. Lett., 2014, 18, (2), pp. 313316.
    20. 20)
      • 26. Kim, J.B., Lee, I.H.: ‘Non-orthogonal multiple access in coordinated direct and relay transmission’, IEEE Commun. Lett., 2015, 19, (11), pp. 20372040.
    21. 21)
      • 20. Jiao, R.C., Dai, L.L., Zhang, J.Y., et al: ‘On the performance of NOMA-based cooperative relaying systems over Rician fading channels’, IEEE Trans. Veh. Technol., 2017, 66, (12), pp. 1140911413.
    22. 22)
      • 16. Men, J.J., Ge, J.H.: ‘Non-orthogonal multiple access for multiple-antenna relaying networks’, IEEE Commun. Lett., 2015, 19, (10), pp. 16861689.
    23. 23)
      • 27. Kader, M.F., Shin, S.Y.: ‘Coordinated direct and relay transmission using uplink NOMA’, IEEE Wirel. Commun. Lett., 2017, PP, (99), pp. 14.
    24. 24)
      • 24. Duan, W., Jiang, X.Q., Wen, M.W., et al: ‘Two-stage superposed transmission for cooperative NOMA systems’, IEEE Access, 2018, 6, (99), pp. 39203931.
    25. 25)
      • 5. Zhang, Y.Y., Ge, J.H.: ‘Performance analysis for non-orthogonal multiple access in energy harvesting relaying networks’, IET Commun., 2017, 11, (11), pp. 17681774.
    26. 26)
      • 11. Sun, Q., Han, S.F., I, C.L., et al: ‘On the ergodic capacity of MIMO NOMA systems’, IEEE Wirel. Commun. Lett., 2015, 4, (4), pp. 405408.
    27. 27)
      • 9. Qian, L.P., Wu, Y., Zhou, H.B., et al: ‘Joint uplink base station association and power control for small-cell networks with non-orthogonal multiple access’, IEEE Trans. Wirel. Commun., 2017, 16, (9), pp. 55675582.
    28. 28)
      • 2. Ding, Z.G., Liu, Y.W., Choi, J., et al: ‘Application of non-orthogonal multiple access in LTE and 5G networks’, IEEE Commun. Mag., 2017, 55, (2), pp. 185191.
    29. 29)
      • 4. Saito, Y., Kishiyama, Y., Benjebbour, A., et al: ‘Non-orthogonal multiple access (NOMA) for cellular future radio access’. Proc. IEEE Vehicular Technology Conf. (VTC Spring), Dresden, Germany, June 2013, pp. 15.
    30. 30)
      • 3. Ding, Z.G., Yang, Z., Fan, P.Z., et al: ‘On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users’, IEEE Signal Process. Lett., 2014, 21, (12), pp. 15011505.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5042
Loading

Related content

content/journals/10.1049/iet-com.2018.5042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading