Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free ULA-based near-field source localisation in cognitive femtocell network: a comparative study of genetic algorithm hybridised with pattern search and swarm intelligence

The rapidly proliferating wireless technology brings an overwhelming increase in wireless applications at a continuous pace. In this framework, a major proportion of overall voice and data traffic originates from indoor users, directing the research world towards the deployment of low-power, low-cost, and low-range femtocell networks in the existing macrocells. However, this development will result in cross-tier interference as well as interference to the primary or licensed users. Cognitive femtocell networks smartly address this challenge through their intelligent sensing and decision-making capabilities. This study proposes a joint spectrum sensing technique, which involves individual sensing by multiple cognitive femtocell base stations (CFBSs), each equipped with a uniform linear array (ULA) of passive sensors. The local observations of CFBSs are then evaluated at the fusion centre to make final decision applying majority rule. In addition to the detection of a number of active primary femtocell networks (PFNs), the proposed near-field source localisation technique provides four-dimensional parameter estimation of each detected PFN signal, i.e. amplitude, angle-of-arrival, frequency, and range. Finally, the proposal is supported by three different implementations, i.e. Hybrid Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony. It also outsmarts an existing single-ULA based spectrum sensing technique in the literature.

References

    1. 1)
      • 17. Swindlehurst, A. L., Kailath, T.: ‘Passive direction of arrival and range estimation for near-field sources’. IEEE 4th ASSP Workshop on Spectrum Estimation and Modeling, Minneapolis, MN, USA, USA, 1988, pp. 123128.
    2. 2)
      • 1. Oh, D., Lee, Y.: ‘Cognitive radio based resource allocation in femto-cells’, J. Commun. Netw., 2012, 14, (3), pp. 252256.
    3. 3)
      • 26. Ghasemi, M.A., Masnadi-Sherazi, M., Biguesh, M., et al: ‘Channel assignment based on bee algorithms in multi-hop cognitive radio networks’, IET Commun., 2014, 8, (13), pp. 23562365.
    4. 4)
      • 14. Huang, Y.D., Barkat, M.: ‘Near-field multiple sources localization by passive sensor array’, IEEE Trans. Antennas Propag., 1991, 39, (7), pp. 968975.
    5. 5)
      • 21. Salman, A., Qureshi, I.M., Sultan, K., et al: ‘Joint spectrum sensing for detection of primary users using cognitive relays with evolutionary computing’, IET Commun., 2015, 9, (13), pp. 16431648.
    6. 6)
      • 13. He, J., Ahmad, M.O., Swamy, M.N.S.: ‘Extended-aperture angle range estimation of multiple Fresnel-region sources with a linear tripole array using cumulants’, Signal Process., 2012, 92, (4), pp. 939953.
    7. 7)
      • 22. Sultan, K., Qureshi, I.M., Zubair, M.: ‘Detection and estimation of multiple far-field primary users using sensor array in cognitive radio networks’, J. Comput., 2013, 5, (2), pp. 714.
    8. 8)
      • 29. Zheng, S., Lou, C., Yang, X.: ‘Cooperatives spectrum sensing using particle swarm optimization’, IEEE Electron. Lett., 2010, 46, (2), pp. 15251526.
    9. 9)
      • 32. Guzey, N., Xu, H., Jagannathan, S.: ‘Localization of near-field radio controlled unintended emitting sources in the presence of multipath fading’, IEEE Trans. Instrum. Meas., 2014, 63, (11), pp. 26962703.
    10. 10)
      • 12. Wu, Y., Ma, L., Hou, C., et al: ‘Subspace-based method for joint range and DOA estimation of multiple near-field sources’, Signal Process., 2006, 86, (8), pp. 21292133.
    11. 11)
      • 19. Zhi, W., Chia, M.Y.: ‘Near-field source localization via symmetric subarrays’, IEEE Signal Process. Lett., 2007, 14, (6), pp. 409412.
    12. 12)
      • 25. Zheng, S., Lou, C., Yang, X.: ‘Cooperative spectrum sensing using particle swarm optimization’, IEEE Electron. Lett., 2010, 46, (22), pp. 15251526.
    13. 13)
      • 6. Zeng, W.J., Li, X.L., Zou, H., et al: ‘Near-field multiple source localization using joint diagonalization’, Signal Process., 2009, 89, (2), pp. 232238.
    14. 14)
      • 2. Lee, C., Shih, C.: ‘Coverage analysis of cognitive femtocell networks’, IEEE Wirel. Commun. Lett., 2014, 3, (2), pp. 177180.
    15. 15)
      • 10. Schmidt, R.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., 1986, 34, (3), pp. 276280.
    16. 16)
      • 16. Bresler, Y., Macovski, A.: ‘Exact maximum likelihood parameter estimation of superimposed exponential signals in noise’, IEEE Trans. Acoust. Speech Signal Process., 1986, 34, (5), pp. 10811089.
    17. 17)
      • 15. Grosicki, E., Meraim, K.A., Hua, Y.: ‘A weighted linear prediction method for near-field source localization’, IEEE Trans. Antennas Propag., 2005, 53, (10), pp. 36513660.
    18. 18)
      • 24. Rashid, R.A., Hamid, A.F., Fisal, N., et al: ‘Efficient in-band spectrum sensing using swarm intelligence for cognitive radio network’, Canadian J. Electr. Comput. Eng., 2015, 38, (2), pp. 106115.
    19. 19)
      • 20. Salman, A., Qureshi, I.M., Saleem, S., et al: ‘Spectrum sensing in cognitive femtocell network based on near-field source localization using genetic algorithm’, IET Commun., 2017, 11, (11), pp. 16991705.
    20. 20)
      • 3. Gharehshiran, O.N., Attar, A., Krishnamurthy, V.: ‘Collaborative sub-channel allocation in cognitive LTE femto-cells: a cooperative game-theoretic approach’, IEEE Trans. Commun., 2013, 61, (1), pp. 325334.
    21. 21)
      • 27. Balieiro, A., Yoshioka, P., Dias, K., et al: ‘Adaptive spectrum sensing for cognitive radio based on multi-objective genetic optimization’, IEEE Electron. Lett., 2013, 49, (17), pp. 10991101.
    22. 22)
      • 18. Huang, Y. D., Barkat, M.: ‘Near-field multiple source localization by passive sensor array’, IEEE Trans. Antennas Propag., 1991, 39, (7), pp. 968975.
    23. 23)
      • 31. Li, X., Liu, L.: ‘Cooperative spectrum sensing for cognitive radios based on PA_GABC algorithm’. Proc. IEEE Int. Conf. Electronics, Communications and Control, Ningbo, China, September 2011, pp. 26042607.
    24. 24)
      • 33. Abdelsalam, H.M., Al-Shaar, A.: ‘An enhanced binary particle swarm optimization algorithm for channel assignment in cognitive radio networks’. Proc. IEEE Int. Conf. on Modelling, Identification and Control, Cairo, Egypt, August 2013, pp. 221226.
    25. 25)
      • 9. Roy, R., Kailath, T.: ‘ESPRIT-estimation of signal parameters via rotational invariance techniques’, IEEE Trans. Acoust., Speech, Signal Process., 1989, 37, (7), pp. 984995.
    26. 26)
      • 7. Nitti, M., Murroni, M., Fadda, M., et al: ‘Exploiting social internet of things features in cognitive radio’, IEEE Access, 2017, 4, (4), pp. 92049212.
    27. 27)
      • 34. Uthitsunthorn, D., Pao-La-Or, P., Kulworawanichpong, T.: ‘Optimal overcurrent relay coordination using artificial bees colony algorithm’. Proc. IEEE Int. Conf. on Electronics, Computer, Telecommunications and Information Technology, Khon Kaen, Thailand, May 2011, pp. 901904.
    28. 28)
      • 5. Srinivasa, S., Jafar, S.A.: ‘Cognitive radio for dynamic spectrum access – The throughput potential of cognitive radio: A theoretical perspective’, IEEE Commun. Mag., 2007, 45, (5), pp. 7379.
    29. 29)
      • 28. Alsharoa, A., Bader, F., Alouini, M.S.: ‘Relay selection and resource allocation for two-way DF-AF cognitive radio networks’, IEEE Wirel. Commun. Lett., 2013, 2, (4), pp. 427430.
    30. 30)
      • 11. Liang, J., Liu, D.: ‘Passive localization of near-field sources using cumulant’, IEEE Sens. J., 2009, 9, (8), pp. 953960.
    31. 31)
      • 8. Wang, K., Wang, L., Shang, J., et al: ‘Mixed near-field and far-field source localization based on uniform linear array partition’, IEEE Sens. J., 2016, 166, (22), pp. 80838090.
    32. 32)
      • 30. Azmat, F., Chen, Y., Stocks, N.: ‘Bio-inspired collaborative spectrum sensing and allocation for cognitive radios’, IET Commun., 2015, 9, (16), pp. 19491959.
    33. 33)
      • 4. Granell, F., Prasad, R.V., Subbalakshml, K.P., et al: ‘Standardization and research in cognitive and dynamic spectrum access networks: IEEE SCC1 efforts and other activities’, IEEE Commun. Mag., 2010, 48, (1), pp. 7179.
    34. 34)
      • 23. Kuchar, A., Tangemann, M., Bonek, E.: ‘A real-time DOA-based smart antenna processor’, IEEE Trans. Veh. Technol., 2002, 51, (6), pp. 12791293.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5038
Loading

Related content

content/journals/10.1049/iet-com.2018.5038
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address