access icon free Spectral efficiency of massive MIMO networks with pilot contamination and channel covariance matrix estimation

This study addresses spectral efficiencies (SEs) in a massive multiple-input multiple-output cellular network with pilot contamination. Both uplink and downlink SEs are investigated with practical channel state information. A downlink precoder minimising signal detection error and power leakage with considerations on spatial correlation has been derived. Also, a low-complexity covariance matrix estimation method has been proposed and compared with the existing estimation method in terms of normalised mean-squared error. It has been demonstrated via simulations that both uplink and downlink SEs using the proposed covariance matrix estimation method can grow with the number of antennas even with a relatively small number of pilot symbols.

Inspec keywords: MIMO communication; precoding; covariance matrices; cellular radio; mean square error methods; signal detection; antenna arrays

Other keywords: power leakage; pilot contamination; channel covariance matrix estimation; massive MIMO networks; practical channel state information; spatial correlation; spectral efficiency; mean-squared error; downlink precoder minimising signal detection error; massive multiple-input multiple-output cellular network; uplink; SEs; pilot symbols; existing estimation method; low-complexity covariance matrix estimation method

Subjects: Communication channel equalisation and identification; Interpolation and function approximation (numerical analysis); Signal processing and detection; Radio links and equipment; Mobile radio systems; Antenna arrays; Other topics in statistics

References

    1. 1)
      • 20. Hoydis, J., ten Brink, S., Debbah, M.: ‘Massive MIMO in the UL/DL of cellular networks: how many antennas do we need?’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 160171.
    2. 2)
      • 12. Guo, X., Chen, S., Zhang, J., et al: ‘Optimal pilot design for pilot contamination elimination/Reduction in large-scale multiple-antenna aided OFDM systems’, IEEE Trans. Wireless Commun., 2016, 15, (11), pp. 72297243.
    3. 3)
      • 15. Ma, S., Jiang, S., Long, T.: ‘Pilot contamination reduction based on improved power control in M-MIMO systems’. Proc. IEEE Int. Conf. WiCOM, Shanghai, China, September 2015, pp. 16.
    4. 4)
      • 17. Björnson, E., Hoydis, J., Sanguinetti, L.: ‘Pilot contamination is not a fundamental asymptotic limitation in massive MIMO’. Proc. IEEE Int. Conf. Commun. ICC, Paris, France, May 2017, pp. 16.
    5. 5)
      • 13. Upadhya, K., Vorobyov, S.A., Vehkapera, M.: ‘Superimposed pilots are superior for mitigating pilot contamination in massive MIMO’, IEEE Trans. Signal Process., 2017, 65, (11), pp. 29172932.
    6. 6)
      • 18. Björnson, E., Sanguinetti, L., Debbah, M.: ‘Massive MIMO with imperfect channel covariance information’. Proc. Asilomar Conf. Signals Systems and Computers, Pacific Grove, CA, USA, November 2016, pp. 974978.
    7. 7)
      • 21. Shariati, N., Björnson, E., Bengtsson, M., et al: ‘Low-complexity polynomial channel estimation in large-scale MIMO with arbitrary statistics’, IEEE J. Sel. Top. Signal Process., 2014, 8, (5), pp. 815830.
    8. 8)
      • 4. Ashikhmin, A., Marzetta, T.: ‘Pilot contamination precoding in multi-cell large scale antenna systems’. Proc. ISIT'12, Cambridge, MA, 2012, pp. 11371141.
    9. 9)
      • 2. Zhu, X., Wang, Z., Dai, L., et al: ‘Smart pilot assignment for massive MIMO’, IEEE Commun. Lett., 2015, 19, (9), pp. 16441647.
    10. 10)
      • 5. Jose, J., Ashikhmin, A., Marzetta, T.L., et al: ‘Pilot contamination and precoding in multi-cell TDD systems’, IEEE Trans. Wireless Commun., 2011, 10, (8), pp. 26402651.
    11. 11)
      • 9. Li, M., Jin, S., Gao, X.: ‘Spatial orthogonality-based pilot reuse for multi-cell massive MIMO transmission’. Proc. IEEE Int. Conf. WCSP, Hangzhou, China, October 2013, pp. 16.
    12. 12)
      • 1. Marzetta, T.L.: ‘Noncooperative cellular wireless with unlimited numbers of BS antennas’, IEEE Trans. Wireless Commun., 2010, 9, (11), pp. 35903600.
    13. 13)
      • 16. Zhang, X., Liu, J., Wu, S., et al: ‘Uplink pilot power control with genetic algorithm for massive MIMO networks’. Proc. IEEE Int. Conf. WCSP, Nanjing, China, October 2017, pp. 16.
    14. 14)
      • 14. Verenzuela, D., Björnson, E., Sanguinetti, L.: ‘Spectral and Energy Efficiency of Superimposed Pilots in Uplink Massive MIMO’, arXiv preprint arXiv:1709.07722. 2017 September 22.
    15. 15)
      • 7. Appaiah, K., Ashikhmin, A., Marzetta, T.L.: ‘Pilot contamination reduction in multi-user TDD systems’. Proc. IEEE Int. Conf. Commun. ICC, Cape Town, South Africa, May 2010, pp. 15.
    16. 16)
      • 3. Akbar, N., Yan, S., Yang, N., et al: ‘Mitigating pilot contamination through location-aware pilot assignment in massive MIMO networks’. 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, December 2016, pp. 16.
    17. 17)
      • 8. Yin, H., Gesbert, D., Filippou, M., et al: ‘A coordinated approach to channel estimation in large-scale multiple-antenna systems’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 264273.
    18. 18)
      • 6. Fernandes, F., Ashikhmin, A., Marzetta, T.L.: ‘Inter-cell interference in noncooperative TDD large scale antenna systems’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 192201.
    19. 19)
      • 11. Zhang, J., Zhang, B., Chen, S., et al: ‘Pilot contamination elimination for large-scale multiple-antenna aided OFDM systems’, IEEE J. Sel. Top. Signal Process., 2014, 8, (5), pp. 759772.
    20. 20)
      • 10. Wang, Z., Qian, C., Dai, L., et al: ‘Location-based channel estimation and pilot assignment for massive MIMO systems’. Proc. IEEE ICCW, London, UK, June 2015, pp. 15.
    21. 21)
      • 19. Kailath, T., Sayed, A.H., Hassibi, B.: ‘Linear estimation’ (Prentice-Hall, New Jersey, 2000).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5032
Loading

Related content

content/journals/10.1049/iet-com.2018.5032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading