access icon free Performance analysis of coordinate interleaved PLC system with Rayleigh channel gain under Nakagami-m additive noise

Power line communication (PLC) is an emerging field of communication that makes use of the existing power line infrastructure for the transmission of data and power. However, the presence of additive and multiplicative power line noises deteriorate the performance of a PLC system. Background and impulsive noises are the two main categories of additive noise, whereas channel gain accounts for the multiplicative noise. In this study, the authors propose coordinate interleaving (CI) technique and investigate its performance for a PLC system under the combined effect of Nakagami-m additive background noise and Rayleigh channel gain. They assume perfect channel state information at the transmitter and receiver of the PLC link. By interleaving the coordinates of the symbols sent over different channel realisations, CI results in significant improvement in the performance of a PLC system. Both the simulated and analytical results shown in this study reveal the effectiveness of the proposed technique in achieving better performance.

Inspec keywords: carrier transmission on power lines; Rayleigh channels; impulse noise; Nakagami channels

Other keywords: coordinate interleaved PLC system; Nakagami- m; additive power line noises; multiplicative noise; perfect channel state information; data; channel gain accounts; performance analysis; Rayleigh channel gain; coordinates; different channel realisations; impulsive noises; multiplicative power line noises; additive noise; existing power line infrastructure; interleaving technique; power line communication

Subjects: Other topics in statistics; Power line systems; Radio links and equipment

References

    1. 1)
      • 2. Ferreira, H.C., Grove, H.M., Hooijen, O., et al: ‘IEEE power line communications: an overview’. 4th AFRICON (AFRICON 1996), Stellenbosch, 1996, vol. 2, pp. 558563.
    2. 2)
      • 20. Mathur, A., Bhatnagar, M.R., Panigrahi, B.K.: ‘Maximum likelihood decoding of QPSK signal in power line communications over Nakagami-m additive noise’. 2015 IEEE Int. Symp. on Power Line Communications and Its Applications (ISPLC), Austin, TX, 2015, pp. 712.
    3. 3)
      • 22. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series and products’ (Academic Press, Cambridge, Massachusetts, 2000, 6th edn.).
    4. 4)
      • 9. Spaulding, A.D., Middleton, D.: ‘Optimum reception in an impulsive interference environment-part I: coherent detection’, IEEE Trans. Commun., 1977, COM-25, (9), pp. 910923.
    5. 5)
      • 17. Khan, M.Z.A., Rajan, B.S.: ‘Single-symbol maximum likelihood decodable linear STBCs’, IEEE Trans. Inf. Theory, 2006, 52, (5), pp. 20622091.
    6. 6)
      • 3. Meng, H., Chen, S., Guan, Y.L., et al: ‘Modeling of transfer characteristics for the broadband power line communication channel’, IEEE Trans. Power Deliv., 2004, 19, (3), pp. 10571064.
    7. 7)
      • 23. Papoulis, A.: ‘Probability, random variables, and stochastic processes’ (McGraw-Hill, New York, 2002).
    8. 8)
      • 14. Dash, S.P., Mallik, R.K., Mohammed, S.K.: ‘Coherent detection in a receive diversity PLC system under nakagami-m noise environment’. 2016 IEEE 27th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, 2016, pp. 16.
    9. 9)
      • 19. Filho, J.C.S.S., Yacoub, M.D.: ‘Simple precise approximations to Weibull sums’, IEEE Commun. Lett., 2006, 10, (8), pp. 614616.
    10. 10)
      • 21. Kim, Y., Oh, H.M., Choi, S.: ‘Error rate performance of QPSK transmitted signal for power line communication under Nakagami-like background noise’. Proc. Energy 2012: The Second Int. Conf. on Smart Grids, Green Communications and IT Energy-aware Technologies, St. Maarten, Netherlands Antilles, March 2012, pp. 2933.
    11. 11)
      • 5. Meng, H., Guan, Y.L., Chen, S.: ‘Modeling and analysis of noise effects on broadband power-line communications’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 630637.
    12. 12)
      • 16. Boutros, J., Viterbo, E.: ‘Signal space diversity: a power- and bandwidth-efficient diversity technique for the Rayleigh fading channel’, IEEE Trans. Inf. Theory, 1998, 44, (4), pp. 14531467.
    13. 13)
      • 12. Tan, B., Thompson, J.: ‘Power line communications channel modeling methodology based on statistical features’. Available at http://arxiv.org/pdf/1203.3879.pdf. (Accessed: 25th May 2014).
    14. 14)
      • 18. Schneider, D., Speidel, J., Stadelmeier, L., et al: ‘Precoded spatial multiplexing MIMO for inhome power line communications’. 2008 IEEE Global Telecommunications Conf. (GLOBECOM 2008), New Orleans, LO, 2008, pp. 15.
    15. 15)
      • 1. Majumder, A., Caffery, J.J.: ‘Power line communications’, IEEE Potentials, 2004, 23, (4), pp. 48.
    16. 16)
      • 15. Abou-Rjeily, C.: ‘Performance analysis of power line communication systems with diversity combining under correlated lognormal fading and Nakagami noise’, IET Commun., 2017, 11, (3), pp. 405413.
    17. 17)
      • 13. Lampe, L., Han Vinck, A.J.: ‘Cooperative multihop power line communications’. Proc. 16th Int. Symp. on Power Line Communications and its Applications (ISPLC 2012), March 2012, pp. 16.
    18. 18)
      • 11. Tlich, M., Zeddam, A., Moulin, F., et al: ‘Indoor power-line communications channel characterization up to 100 MHz-Part I: one-parameter deterministic model’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 13921401.
    19. 19)
      • 8. Middleton, D.: ‘Statistical-physical models of electro-magnetic interference’, IEEE Trans. Electromagn. Compat., 1977, EMC-19, (3), pp. 106126.
    20. 20)
      • 6. Tao, Z., Xiaoxian, Y., Baohui, Z., et al: ‘Statistical analysis and modeling of noise on 10-kV medium-voltage power lines’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 14331439.
    21. 21)
      • 4. Zimmermann, M., Dostert, K.: ‘Analysis and modeling of impulsive noise in broad-band powerline communications’, IEEE Trans. Electromagn. Compat., 2002, 44, (1), pp. 249258.
    22. 22)
      • 10. Balakirsky, V.B., Vinck, A.J.H.: ‘Potential limits on power-line communications over impulsive noise channel’. Proc. 7th Int. Symp. Power-Line Communications and its Applications (ISPLC 2003), March 2003, pp. 3236.
    23. 23)
      • 7. Lee, S.J., Shin, D.H., Kim, Y.H., et al: ‘Analysis and modeling of noise on 22.9 kV underground power distribution cable for broadband power line communication’, Int. J. Control Automa., 2010, 3, (3), pp. 112.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2018.5008
Loading

Related content

content/journals/10.1049/iet-com.2018.5008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading