access icon free New approximation for pdf of K- distribution: analytical study of QoS parameters in free space optical communication

A new approximate expression for the probability density function (pdf) of K-distribution is proposed. The approximate pdf is found to be in good agreement with the exact analytical closed-form expression over the desired range of scintillation index lying between 2 and 3. Employing the proposed pdf, the expression in respect of two of the QoS measures of fade probability and bit error rate (BER) valid under various modulation schemes is given. Using the generalised expression of BER, plots under ON–OFF keying and binary phase shift keying modulation schemes are shown. The resulting expressions provide a better understanding in contrast to the exact results obtained in terms of Meijer G functions. Numerical computations are carried out to demonstrate the efficacy of approximate results.

Inspec keywords: optical modulation; approximation theory; error statistics; statistical distributions; phase shift keying; free-space optical communication; quality of service

Other keywords: BER; probability density function; approximate expression; exact analytical closed-form expression; binary phase shift keying modulation scheme; approximate pdf; ON-OFF keying modulation scheme; scintillation index; free space optical communication; K-distribution; QoS measures; bit error rate; QoS parameters; fade probability

Subjects: Other topics in statistics; Modulation and coding methods; Free-space optical links; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 1. Uysal, M., Navidpour, S.M., Li, J.: ‘Error rate performance of coded free-space optical links over strong turbulence channels’, IEEE Commun. Lett., 2004, 8, (10), pp. 635637.
    2. 2)
      • 37. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I., et al: ‘Integrals and series, vol. 3: more special functions’ (Gordon and Breach Science Publishers, London, 1990).
    3. 3)
      • 17. Abdi, A., Kaveh, M.: ‘K distribution: an appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels’, Electron. Lett., 1998, 34, (9), pp. 851852.
    4. 4)
      • 32. Barrios Porras, R., ‘Exponentiated Weibull fading channel model in free-space optical communications under atmospheric turbulence’, 2013.
    5. 5)
      • 25. Abraham, D.A., Lyons, A.P.: ‘Reliable methods for estimating the K-distribution shape parameter’, IEEE J. Ocean. Eng., 2010, 35, (2), pp. 288302.
    6. 6)
      • 20. Niu, M., Cheng, J., Holzman, J.F., et al: ‘Performance analysis of coherent free space optical communication systems with K-distributed turbulence’. 2009 IEEE Int. Conf. on Commun., Dresden, Germany, 2009, pp. 15.
    7. 7)
      • 28. Weinberg, G.V., Glenny, V.G.: ‘Optimal Rayleigh approximation of the K-distribution via the Kullback-Leibler divergence’, IEEE Signal Process. Lett., 2016, 23, (8), pp. 10671070.
    8. 8)
      • 14. Samimi, H., Azmi, P.: ‘Subcarrier intensity modulated free-space optical communications in k-distributed turbulence channels’, J. Opt. Commun. Netw., 2010, 2, (8), pp. 625632.
    9. 9)
      • 24. Al-Ahmadi, S., Yanikomeroglu, H.: ‘‘On the approximation of the generalized-K distribution by a gamma distribution for modeling composite fading channels’’, IEEE Trans. Wirel. Commun., 2010, 9, (2), pp. 706713.
    10. 10)
      • 2. Zhu, X., Kahn, J.M.: ‘Free-space optical communication through atmospheric turbulence channels’, IEEE Trans. Commun., 2002, 50, (8), pp. 12931300.
    11. 11)
      • 29. Wang, Z., Bovik, A.C.: ‘Mean squared error: love it or leave it? A new look at signal fidelity measures’, IEEE Signal Process. Mag., 2009, 26, (1), pp. 98117.
    12. 12)
      • 34. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: ‘Optical wireless communications: system and channel modelling with Matlab’ (CRC Press, Boca Raton, FL, USA, 2012).
    13. 13)
      • 38. Ng, E.W., Geller, M.: ‘A table of integrals of the error functions’, J. Res. NBS-B, 1969, 73B, (1), pp. 120.
    14. 14)
      • 31. Wang, J., Zhang, Q., Udeh, C.P.: ‘Fast QC-LDPC code for free space optical communication’. Proc. of SPIE, San Francisco, California, USA, February 2017, vol. 10096, p. 10096-9.
    15. 15)
      • 26. Joughin, I.R., Percival, D.B., Winebrenner, D.P.: ‘Maximum likelihood estimation of K distribution parameters for SAR data’, IEEE Trans. Geosci. Remote Sens., 1993, 31, (5), pp. 989999.
    16. 16)
      • 22. Nistazakis, H.E., Tsiftsis, T.A., Tombras, G.S.: ‘Performance analysis of free-space optical communication systems over atmospheric turbulence channels’, IET Commun., 2009, 3, (8), pp. 14021409.
    17. 17)
      • 35. Leblanc, A.: ‘On estimating distribution functions using Bernstein polynomials’, Annals of the Institute of Statistical Mathematics, 2012, 64, (5), pp. 919943.
    18. 18)
      • 12. Parry, G., Pusey, P.: ‘K distributions in atmospheric propagation of laser light’, J. Opt. Soc. Am., 1979, 69, (5), pp. 796798.
    19. 19)
      • 4. Andrews, L.C., Phillips, R.L.: ‘Laser beam propagation through random media’, vol. 52 (SPIE Press, Bellingham, WA, 2005).
    20. 20)
      • 21. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic Press, New York, 2014).
    21. 21)
      • 11. Jakeman, E., Pusey, P.: ‘A model for non-rayleigh sea echo’, IEEE Trans. Antennas Propag., 1976, 24, (6), pp. 806814.
    22. 22)
      • 15. Majumdar, A.K.: ‘Free-space optical (FSO) platforms: Unmanned aerial vehicle (UAV) and mobile’, ‘Advanced free space optics (FSO)’ (Springer, New York, 2015), pp. 203225.
    23. 23)
      • 18. Barakat, R.: ‘Weak-scatterer generalization of the K-density function with application to laser scattering in atmospheric turbulence’, J. Opt. Soc. Am. A, 1986, 3, (4), pp. 401409.
    24. 24)
      • 7. Jakeman, E., Pusey, P.N.: ‘Significance of K distributions in scattering experiments’, Phys. Rev. Lett., 1978, 40, (9), pp. 546.
    25. 25)
      • 8. Phillips, R.L., Andrews, L.C.: ‘Measured statistics of laser-light scattering in atmospheric turbulence’, J. Opt. Soc. Am., 1981, 71, (12), pp. 14401445.
    26. 26)
      • 30. Chatzidiamantis, N.D., Sandalidis, H.G., Karagiannidis, G.K., et al: ‘A simple statistical model for turbulence-induced fading in free-space optical systems’. 2010 IEEE Int. Conf. on Communications (ICC), Cape Town, South Africa, 2010, pp. 15.
    27. 27)
      • 6. Niu, M., Cheng, J., Holzman, J.F.: ‘Terrestrial coherent free-space optical communication systems’, in Das, N. (Eds.): ‘Optical communication’ (IntechOpen, London, UK, 2012).
    28. 28)
      • 3. Abouei, J., Plataniotis, K.N.: ‘Multiuser diversity scheduling in free-space optical communications’, J. Lightw. Technol., 2012, 30, (9), pp. 13511358.
    29. 29)
      • 9. Al-Habash, M.A., Andrews, L.C., Phillips, R.L.: ‘Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media’, Opt. Eng., 2001, 40, (8), pp. 15541562.
    30. 30)
      • 10. Kiasaleh, K.: ‘Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence’, IEEE Trans. Commun., 2006, 54, (4), pp. 604607.
    31. 31)
      • 36. Luke, Y.L.: ‘The special functions and their approximations’ vol. 1 (Academic, New York, 1969).
    32. 32)
      • 13. Sandalidis, H.G., Tsiftsis, T.A., Karagiannidis, G.K., et al: ‘BER performance of FSO links over strong atmospheric turbulence channels with pointing errors’, IEEE Commun. Lett., 2008, 12, (1), pp. 4446.
    33. 33)
      • 27. Kapur, J.N., Kesavan, H.K.: ‘Entropy optimization principles with applications’, ‘Entropy optimization principles with applications’ (Academic Press, Boston, USA, 1992).
    34. 34)
      • 5. Nistazakis, H.E., Stassinakis, A.N., Sandalidis, H.G., et al: ‘QAM and PSK OFDM RoFSO over M-turbulence induced fading channels’, IEEE Photon. J., 2015, 7, (1), pp. 111.
    35. 35)
      • 16. Peppas, K.P., Mathiopoulos, P.T.: ‘Free-space optical communication with spatial modulation and coherent detection over HK atmospheric turbulence channels’, J. Lightw. Technol., 2015, 33, (20), pp. 42214232.
    36. 36)
      • 23. Yang, L., Gao, X., Alouini, M.S.: ‘Performance analysis of free-space optical communication systems with multiuser diversity over atmospheric turbulence channels’, IEEE Photon. J., 2014, 6, (2), pp. 117.
    37. 37)
      • 33. Popoola, W.O., Ghassemlooy, Z.: ‘BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence’, J. Lightwave Technol., 2009, 27, (8), pp. 967973.
    38. 38)
      • 19. Bithas, P.S., Sagias, N.C., Mathiopoulos, P.T., et al: ‘On the performance analysis of digital communications over generalized-K fading channels’, IEEE Commun. Lett., 2006, 10, (5), pp. 353355.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.1388
Loading

Related content

content/journals/10.1049/iet-com.2017.1388
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading