Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free 2D curtailed harmonic memory polynomial for reduced complexity in concurrent dual-band modelling and digital predistortion with the second band at harmonic frequency

Multi-band transmitter systems are evolving to support the smooth transition from 4G to 5G communication systems. Moreover, recent developments of multi-band and ultra-wideband power amplifiers have led to a possible scenario where the second carrier signal is transmitted at the harmonic frequency of the first carrier signal. This results in harmonic interference from the first carrier signal as well as additional cross-modulation and intermodulation distortion (IMD) components, which cannot be filtered out. The computational and memory requirements for digital predistortion (DPD) in such scenario increase drastically to include all interference terms. This study presents a novel two-dimensional curtailed harmonic memory polynomial (2D-CHMP) model to capture harmonic interferences, cross-modulation and IMDs. The model complexity and memory requirement of 2D-CHMP are very less as compared to the state-of-the-art two-dimensional harmonic memory polynomial (2D-HMP) model. For proof-of-concept, it is shown with two different measurement setups that the proposed 2D-CHMP DPD provides similar linearisation performances as compared to the 2D-HMP DPD with less number of coefficients and computational complexity. As a study, it is shown that the proposed model can be further adapted to a low-precision (low-bit) environment by utilising principal component analysis.

References

    1. 1)
      • 7. Ai, B., Zhong, Z.D., Zhu, G., et al: ‘Two-dimensional indexing polynomial-based pre-distorter for power amplifiers with memory effects’, IET Commun., 2008, 2, (10), pp. 12631271.
    2. 2)
      • 5. Rawat, K., Ghannouchi, F.: ‘Dual-band matching technique based on dual characteristic impedance transformers for dual-band power amplifiers design’, IET Microw. Antennas Propag., 2011, 5, (14), pp. 17201729.
    3. 3)
      • 13. Zenteno, E., Piazza, R., Shankar, M.R.B., et al: ‘Multiple-input multiple-output symbol rate signal digital predistorter for non-linear multi-carrier satellite channels’, IET Commun., 2015, 9, (16), pp. 20532059.
    4. 4)
      • 3. 3GPP RP-091440: ‘Work Item Description: Carrier Aggregation for LTE’. Nokia Corporation, Sanya, P.R. China, December 2009.
    5. 5)
      • 27. Rawat, M., Ghannouchi, F.M., Rawat, K.: ‘Three-layered biased memory polynomial for dynamic modeling and predistortion of transmitters with memory’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (3), pp. 768777.
    6. 6)
      • 25. Jaraut, P., Rawat, M.: ‘Complexity and numerical stability investigation in concurrent dual-band modeling of ultra-wideband power amplifiers for harmonically related signals’. Proc. IEEE MTT-S Asia-Pacific Microwave Conf., New Delhi, India, December 2016, pp. 14.
    7. 7)
      • 8. Ghannouchi, F.M., Taringou, F., Kwan, A., et al: ‘Identification of true-static predistorter using a sine wave and accurate quantification of memory effects in broadband wireless transmitters’, IET Commun., 2011, 5, (9), pp. 12681274.
    8. 8)
      • 18. Naraharisetti, N., Roblin, P., Quindroit, C., et al: ‘Efficient least-squares 2-D-cubic spline for concurrent dual-band systems’, IEEE Trans. Microw. Theory Tech., 2015, 63, (7), pp. 21992210.
    9. 9)
      • 1. Alexiou, A.: ‘The road to 5G – visions and challenges’, in Alexiou, A. (Ed.): ‘5G Wireless Technologies' (The Institution of Engineering and Technology, 2017), pp. 115, ch. 1.
    10. 10)
      • 11. Zhang, C., Xiao, Z., Gao, B., et al: ‘Power amplifier non-linearity treatment with distorted constellation estimation and demodulation for 60 GHz single-carrier frequency-domain equalisation transmission’, IET Commun., 2014, 8, (3), pp. 278286.
    11. 11)
      • 2. Nordrum, A.: ‘5 myths about 5G’. IEEE Spectrum, May 2016.
    12. 12)
      • 23. Quindroit, C., Naraharisetti, N., Roblin, P., et al: ‘FPGA implementation of orthogonal 2D digital predistortion system for concurrent dual-band power amplifiers based on time-division multiplexing’, IEEE Trans. Microw. Theory Tech., 2013, 61, (12), pp. 45914599.
    13. 13)
      • 16. Rawat, M., Narharishetti, N., Quindroit, C., et al: ‘Concurrent Dual-band transmitter behavioral modeling with physically motivated 2-D rational functions’. 82nd ARFTG Microw. Meas. Symp., Columbus, OH, USA, November 2013, pp. 14.
    14. 14)
      • 4. Yousefi, A., Medi, A.: ‘Wide-band high-efficiency ku-band power amplifier’, IET Circuits Device Syst., 2014, 8, (6), pp. 583592.
    15. 15)
      • 12. Younes, M., Ghannouchi, F.M.: ‘Generalized twin-box model for compensation of transmitters RF impairments’, IET Commun., 2014, 8, (4), pp. 413418.
    16. 16)
      • 15. Liu, Y.J., Chen, W., Zhou, J., et al: ‘Digital predistortion for concurrent dual-band transmitters using 2-D modified memory polynomials’, IEEE Trans. Microw. Theory Tech., 2013, 61, (1), pp. 281290.
    17. 17)
      • 21. Gilabert, P.L., Montoro, G., López, D., et al: ‘Order reduction of wideband digital predistorters using principal component analysis’. IEEE MTT-S Int. Microwave Symp. Digest, Seattle, WA, USA, June 2013, pp. 17.
    18. 18)
      • 9. Zeleny, J., Dehos, C., Rosson, P., et al: ‘Receiver-aided predistortion of power amplifier non-linearities in cellular networks’, IET Sci. Measure. Technol., 2012, 6, (3), pp. 168175.
    19. 19)
      • 28. Dawar, N., Sharma, T., Darraji, R., et al: ‘Linearisation of radio frequency power amplifiers exhibiting memory effects using direct learning-based adaptive digital predistoriton’, IET Commun., 2016, 10, (8), pp. 950954.
    20. 20)
      • 10. Varahram, P., Ali, B.M., Mohammady, S., et al: ‘Power amplifier linearization scheme to mitigate superfluous radiations and suppress adjacent channel interference’, IET Commun., 2014, 8, (2), pp. 258265.
    21. 21)
      • 17. Ding, L., Yang, Z., Gandhi, H.: ‘Concurrent dual-band digital predistortion’. IEEE MTT-S Int. Microwave Symp. Digest, Montreal, QC, Canada, June 2012, pp. 13.
    22. 22)
      • 14. Bassam, S.A., Helaoui, M., Ghannouchi, F.M.: ‘2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters’, IEEE Trans. Microw. Theory Tech., 2011, 59, (10), pp. 25472553.
    23. 23)
      • 20. Rawat, M., Roblin, P., Quindroit, C., et al: ‘Concurrent Dual-band modeling and digital predistortion in the presence of unfilterable harmonic signal interference’, IEEE Trans. Microw. Theory Tech., 2015, 63, (2), pp. 625637.
    24. 24)
      • 19. Omer, M., Rimini, R., Draxler, P., et al: ‘Interference cancellation for odd harmonics of envelope tracking RF power amplifier systems’. IEEE MTT-S Int. Microwave Symp. Digest, Seattle, WA, USA, June 2013, pp. 13.
    25. 25)
      • 31. 3GPP R4-123845: ‘Feasibility study of harmonic spurious emission from B28 in Japan’. NTT DOCOMO, Sharp, NEC, Qingdao, P.R. China, August 2012.
    26. 26)
      • 6. Ding, L., Zhou, G.T., Morgan, D.R., et al: ‘A robust digital baseband predistorter constructed using memory polynomials’, IEEE Trans. Commun., 2004, 52, (1), pp. 159165.
    27. 27)
      • 29. Beikmirza, M.R., Mohammadi, A., Mirzavand, R.: ‘Power amplifier linearisation using digital predistortion and multi-port techniques’, IET Sci. Measure. Technol., 2016, 10, (5), pp. 467476.
    28. 28)
      • 30. 3GPP R4-120442: ‘Way forward for inter-band CA Class A2’. Nokia Corporation, Dresden, Germany, February 2012.
    29. 29)
      • 32. Lipschutz, S.: ‘Arrays, records and pointers’ in data structures, Revised 1st edn., Schaum's outline series' (McGraw-Hill Education, India, 2013), ch. 4, sec. 4.8, pp. 4.154.18.
    30. 30)
      • 22. Gilabert, P.L., Montoro, G.: ‘3-D Distributed memory polynomial behavioral model for concurrent dual-band envelope tracking power amplifier linearization’, IEEE Trans. Microw. Theory Tech., 2015, 63, (2), pp. 638648.
    31. 31)
      • 24. Jaraut, P., Rawat, M.: ‘Application of principal component analysis based effective digital predistortion technique for low-cost FPGA implementation’, Int. J. RF Microw. Comput., Aided Eng., 2017, 27, (6), pp. 115.
    32. 32)
      • 26. Landin, P.N., Isaksson, M., Handel, P.: ‘Comparison of evaluation criteria for power amplifier behavioral modeling’. IEEE MTT-S Int. Microwave Symp. Digest, Atlanta, GA, June 2008, pp. 14411444.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.1376
Loading

Related content

content/journals/10.1049/iet-com.2017.1376
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address