Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Nearly perfect Gaussian integer sequences with arbitrary degree

Based on p-ary pseudorandom sequences, this study proposes a construction of degree-k Gaussian integer sequences of period by utilising kth power residue symbol satisfying , where p is an odd prime and positive integers . The periodic autocorrelation values are 0 at shifts of the resultant sequences. Specially, there is exactly one non-zero out-of-phase periodic autocorrelation value of the resultant sequences for . The non-zero elements of the sequences are balanced and can be predefined flexibly. Moreover, the maximum energy efficiency of the proposed sequences is close to for sufficiently large m.

References

    1. 1)
      • 22. Lee, C.D., Hong, S.: ‘Generation of long perfect Gaussian integer sequences’, IEEE Signal Process. Lett., 2017, 24, (4), pp. 515519.
    2. 2)
      • 21. Chang, H.H.: ‘Degree-(k+1) perfect Gaussian integer sequences of period pk’, Proc. IEEE Int. Symp. Inf. Theory, Aachen, Germany, 2017, pp. 15051509.
    3. 3)
      • 24. Fan, P.Z., Darnell, M.: ‘Sequence design for communications applications’ (Research Studies, London, UK, 1996).
    4. 4)
      • 6. Huber, K.: ‘Codes over Gaussian integers’, IEEE Trans. Inf. Theory, 1994, 40, (1), pp. 207216.
    5. 5)
      • 4. Fan, P.Z., Marnell, D.: ‘Maximal length sequences over Gaussian integers’, Electron. Lett., 1994, 30, (16), pp. 12781286.
    6. 6)
      • 25. Nogami, Y., Uehara, S., Tsuchiya, K., et al: ‘A multi-value sequence generated by power residue symbol and trace function over odd characteristic field’, IEICE Trans. Fundam. Electr. Commun. Comput. Sci., 2016, E99-A, (12), pp. 22262237.
    7. 7)
      • 18. Lee, C.D., Chen, Y.H.: ‘Families of Gaussian integer sequences with high energy efficiency’, IET Commun., 2016, 10, (17), pp. 24162421.
    8. 8)
      • 7. Li, C.P., Wang, S.H., Wang, C.L.: ‘Novel low-complexity SLM schemes for PAPR reduction in OFDM systems’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 29162921.
    9. 9)
      • 23. Golomb, S.W., Gong, G.: ‘Signal design for good correlation: for wireless communication, cryptography and radar’ (Cambridge University Press, Cambridge, UK, 2005).
    10. 10)
      • 5. Deng, X., Fan, P.Z., Suehiro, N.: ‘Sequences with zero correlation over Gaussian integers’, Electron. Lett., 2000, 36, (6), pp. 552553.
    11. 11)
      • 1. Luke, H.D., Hadinejad, M.H.: ‘Binary and quadriphase sequences with optimal autocorrelation properties: a survey’, IEEE Trans. Inf. Theory, 2003, 49, (12), pp. 32713282.
    12. 12)
      • 11. Yang, Y., Tang, X.H., Zhou, Z.C.: ‘Perfect Gaussian integer sequences of odd prime length’, IEEE Signal Process. Lett., 2012, 19, (10), pp. 615618.
    13. 13)
      • 19. Pei, S.C., Chang, K.W.: ‘Perfect Gaussian integer sequences of arbitrary length’, IEEE Signal Process. Lett., 2015, 22, (8), pp. 10401044.
    14. 14)
      • 14. Lee, C.D., Huang, Y.P., Chang, Y., et al: ‘Perfect Gaussian integer sequences of odd period 2m1’, IEEE Signal Process. Lett., 2015, 22, (7), pp. 881885.
    15. 15)
      • 17. Boztas, S., Parampalli, U.: ‘Nonbinary sequences with perfect and nearly perfect autocorrelations’, Proc. IEEE Int. Sym. Inf. Theory, Austin, Texas, USA, 2010, pp. 13001304.
    16. 16)
      • 16. Chen, X., Li, C., Rong, C.: ‘Perfect Gaussian integer sequences from cyclic difference sets’, Proc. IEEE Int. Symp. Inf. Theory, Barcelona, Spain, 2016, pp. 115119.
    17. 17)
      • 12. Ma, X.W., Wen, Q.Y., Zhang, J., et al: ‘New perfect Gaussian integer sequences of period pq’, IEICE Trans. Fundam. Electr. Commun. Comput. Sci., 2013, E96-A, (11), pp. 22902293.
    18. 18)
      • 9. Lusina, P., Shavgulidze, S., Bossert, M.: ‘Space-time block factorisation codes over Gaussian integers’, Proc. Inst. Elect. Eng. Commun., 2004, 151, (5), pp. 415421.
    19. 19)
      • 13. Chang, H.H., Li, C.P., Lee, C.D., et al: ‘Perfect Gaussian integer sequences of arbitrary composite length’, IEEE Trans. Inf. Theory, 2015, 61, (7), pp. 41074115.
    20. 20)
      • 8. Wang, S.H., Li, C.P., Lee, K.C., et al: ‘A novel low-complexity precoded OFDM system with reduced PAPR’, IEEE Trans. Signal Process., 2015, 63, (6), pp. 13661376.
    21. 21)
      • 20. Wang, S.H., Li, C.P., Chang, H.H., et al: ‘A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions’, IEEE Trans. Commun., 2016, 64, (1), pp. 365376.
    22. 22)
      • 2. Hoholdt, T., Justesen, J.: ‘Ternary sequences with perfect periodic autocorrelation’, IEEE Trans. Inf. Theory, 1983, 29, (4), pp. 597600.
    23. 23)
      • 3. Popovic, B.M.: ‘Generalized chirp-like polyphase sequences with optimum correlation properties’, IEEE Trans. Inf. Theory, 1992, 38, (4), pp. 14061409.
    24. 24)
      • 10. Hu, W., Wang, S.H., Li, C.P.: ‘Gaussian integer sequences with ideal periodic autocorrelation functions’, IEEE Trans. Signal Process., 2012, 60, (11), pp. 60746079.
    25. 25)
      • 15. Lee, C.D., Li, C.P., Chang, H.H., et al: ‘Further results on degree-2 perfect Gaussian integer sequences’, IET Commun., 2016, 10, (12), pp. 15421552.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.1274
Loading

Related content

content/journals/10.1049/iet-com.2017.1274
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address