Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Compensation of filter cascading effects and non-linearities in flexible multi-carrier-based optical networks using a complex-kernel-based support vector machine

Filter cascading effects are identified and compensated in flexible coherent multi-carrier optical networks using, for the first time, a complex-valued support vector machine (C-SVM) non-linear equaliser which is compared to phase-conjugated subcarrier-coding (PC-SC)-based non-linearity compensation. The transmission performance of super-channel-based dual-polarisation coherent multi-band optical OFDM (DP-MB-OFDM) is analysed in a flexible network with two-stage wavelength selective-switch reconfigurable optical add-drop multiplexer for coarse and fine switching granularity. It is shown that filter cascading effects have significant impact only on edge OFDM sub-bands. On the other hand, C-SVM outperforms PC-SC resulting in an extension of the transmission-reach, for instance, by 420 km when employing 32-quadrature amplitude modulation at a targeted bit-error-rate of 10−3. This occurs since C-SVM can compensate more effectively stochastic-induced nonlinear cross-talk effects. Moreover, the interplay between polarisation-mode dispersion (PMD) and fibre non-linearity is also investigated in DP-MB-OFDM, revealing that a high PMD causes time fluctuation on the non-linear interaction affecting the balance of the ‘twin-subcarriers’ in PS-SC.

References

    1. 1)
      • 20. Giacoumidis, E., Tang, J.M., Tomkos, I.: ‘Performance of optical fast-OFDM in MMF-based links’. Proc. Technical Digest of Optical Fiber Communication (OSA, OFC'2011), CA., USA, 2011, paper OWU3.
    2. 2)
      • 21. Giacoumidis, E., Ibrahim, S., Zhao, J., et al: ‘Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission’. Proc. Optical Society of America, Technical Digest of Optical Fiber Communication (OSA, OFC'2012), CA., USA, 2012, paper JW2A.65.
    3. 3)
      • 11. Zibar, D., Luis, H., De Carvalho, M. H., et al: ‘Application of machine learning techniques for amplitude and phase noise characterization’, IEEE/OSA J. Lightw. Technol., 2015, 33, (7), pp. 13331343.
    4. 4)
      • 22. Giacoumidis, E., Tomkos, I., Tang, J. M.: ‘Adaptive Modulation-Induced Reduction in Filter Concatenation Impairment for Optical OFDM Metro/Regional Systems’, IEEE/OSA J. Opt. Comm. Netw., 2011, 3, (7), pp. 587593.
    5. 5)
      • 18. Giacoumidis, E., Ibrahim, S. K., Zhao, J., et al: ‘Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links’, IEEE Photonics Technol. Lett., 2012, 24, (1), pp. 5254.
    6. 6)
      • 5. Gao, G., Chen, X., Shieh, W.: ‘Limitation of fiber nonlinearity compensation using digital back propagation in the presence of PMD’. Proc. Optical Society of America, Technical Digest of Optical Fiber Communication (OSA, OFC'2012), California, USA, 2012, paper OM3A.5.
    7. 7)
      • 19. Giacoumidis, E., Tsokanos, A., Mouchos, C., et al: ‘Extensive comparisons of optical fast-OFDM and conventional optical OFDM for local and access networks’, IEEE/OSA J. Opt. Commun. Netw., 2012, 4, (10), pp. 724733.
    8. 8)
      • 6. Giacoumidis, E., Aldaya, I., Jarajreh, M. A., et al: ‘Volterra-based reconfigurable nonlinear equalizer for coherent OFDM’, IEEE Photonics Technol. Lett., 2014, 26, (14), pp. 3831386.
    9. 9)
      • 12. Ellis, A. D., Le, S., Al-Khateeb, M., et al: ‘Impact of optical phase conjugation on the nonlinear Shannon limit (invited)’, IEEE/OSA J. Lightw. Technol., 2017, 35, (4), pp. 792798.
    10. 10)
      • 17. Giacoumidis, E., Jarajreh, M. A., Sygletos, S., et al: ‘Dual-polarization multi-band OFDM transmission and transceiver limitations for up to 500 Gb/s in uncompensated long-haul links’, OSA Opt. Exp., 2014, 22, (9), pp. 1097510986.
    11. 11)
      • 14. Le, S. T., McCarthy, M. E., Suibhne, N. M., et al: ‘Demonstration of phase-conjugated subcarrier coding for fiber nonlinearity compensation in CO-OFDM transmission’, IEEE/OSA J. Lightw. Technol., 2015, 33, (11), pp. 22062212.
    12. 12)
      • 23. Agrawal, G.P.: ‘Nonlinear fiber optics’ (Academic Press, San Diego, CA, USA, 2001, 3rd edn.), ISBN 0-12-045143-3.
    13. 13)
      • 10. Zhang, J., Chen, W., Gao, M., et al: ‘K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system’, OSA Opt. Exp., 2017, 25, (22), pp. 2757027580.
    14. 14)
      • 7. Giacoumidis, E., Mhatli, S., Nguyen, T., et al: ‘Kerr-induced nonlinearity compensation in CO-OFDM by support vector machine-based regression equalizer’. Proc. Optical Society of America, Technical Digest of Optical Fiber Communication (OSA, OFC'2016), California, USA, 2016, paper Th2A.49.
    15. 15)
      • 4. Phillips, I.D., Tan, M., Stephens, M. F., et al: ‘Exceeding the nonlinear-Shannon limit using Raman laser based amplification and optical phase conjugation’. Proc. Optical Society of America, Technical Digest of Optical Fiber Communication (OSA, OFC'2014), California, USA, 2014, paper M3C.1.
    16. 16)
      • 2. Ladouceur, F., Love, J. D.: ‘Silica-based buried channel waveguides and devices’ (Chapman & Hall, London, 1995), Chap. 8.
    17. 17)
      • 1. Van Trigt, C.: ‘Visual system-response functions and estimating reflectance’, J. Opt. Soc. Am. A, 1997, 14, (4), pp. 741755.
    18. 18)
      • 16. Giacoumidis, E., Aldaya, I. A., Ghanbarisabagh, M., et al: ‘Capacity limits of core optical transmission technologies’. Proc. Technical Digest of Data Networks, Communications and Computing (WSEAS/NAUN, DNCOCO'2015), Budapest, Hungary, 2015, paper 73003-178.
    19. 19)
      • 9. Jarajreh, M.A., Giacoumidis, E., Aldaya, I., et al: ‘Artificial neural network nonlinear equalizer for coherent optical OFDM’, IEEE Photonics Technol. Lett., 2015, 27, (4), pp. 387390.
    20. 20)
      • 13. Liu, X., Chraplyvy, A. R., Winzer, P. J., et al: ‘Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit’, Nat. Photon., 2013, 7, pp. 560568.
    21. 21)
      • 15. Le, S. T., McCarthy, M. E., Suibhne, N. M., et al: ‘Phase-conjugated subcarrier coding for fibre nonlinearity mitigation in CO-OFDM transmission’. Proc. Technical Digest of European Conf. Exhibition on Optical Communication (IEEE, ECOC'2016), 2016, paper We.3.3.2.
    22. 22)
      • 8. Giacoumidis, E., Le, S. T., Ghanbarisabagh, M., et al: ‘Fiber nonlinearity-induced penalty reduction in coherent optical OFDM by artificial neural network based nonlinear equalization’, OSA Opt. Lett., 2015, 40, (21), pp. 51135116.
    23. 23)
      • 24. Chapelle, O.: ‘Training a support vector machine in the primal’, Neural Comput., 2007, 19, (5), pp. 11551178.
    24. 24)
      • 3. Khodashenas, P.S., Rivas, J. M., Shariati, B., et al: ‘Investigation of spectrum granularity for performance optimization of flexible Nyquist-WDM-based optical networks’, IEEE/OSA J. Lightw. Technol., 2015, 33, (23), pp. 47674774.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.1212
Loading

Related content

content/journals/10.1049/iet-com.2017.1212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address