access icon free Game-theoretic resource allocation scheme for multiple-amplify-and-forward-relay wireless networks

Mitigating the effect of fading in wireless networks has been a prominent benefit associated with cooperative relaying. Especially in multi-relay scenarios, efficient resource allocation can drastically improve the performance of cooperative systems affected by fading. However, practically, a relay may not cooperate unless provided with some incentive to improve its utility. To address the above problem, this study introduces a novel integrated game-theoretic framework which involves incentive-based optimal power allocation. Coalition formation game has been used to model the cooperation among relays which is integrated into a Stackelberg game, for considering the benefits of source and relays jointly. The game-theoretic framework has been implemented for both disjoint and overlapping coalitions with an objective to find an optimal and stable overlapping coalition set of relays. This not only maximises their utilities, but also helps the source to allocate the optimal power to the relays at the optimal price, thereby, increasing its own utility. Simulation results have confirmed that the proposed game-theoretic solutions achieve comparable performance in terms of system throughput when compared with the centralised approach. In particular, overlapping coalition approach exhibits consistently better performance than the disjoint coalitions approach due to increased power allocation to individual relays.

Inspec keywords: game theory; cooperative communication; pricing; cooperative systems; resource allocation

Other keywords: multiple-AF-relay wireless networks; integrated game-theoretic framework; coalition formation game; efficient resource allocation; fading; relaying; individual relays; game-theoretic resource allocation scheme; optimal coalition set; optimal power allocation; Stackelberg game; stable overlapping coalition set; multirelay scenarios; increased power allocation; game-theoretic solutions

Subjects: Game theory; Optimisation techniques; Radio links and equipment

References

    1. 1)
      • 35. Gao, Y., Chen, Y., Liu, K.J.R.: ‘Cooperation stimulation for multiuser cooperative communications using indirect reciprocity game’, IEEE Trans. Commun., 2012, 60, (12), pp. 36503661.
    2. 2)
      • 36. Saad, W., Han, Z., Debbah, M., et al: ‘A distributed coalition formation framework for fair user cooperation in wireless networks’, IEEE Trans. Wirel. Commun., 2009, 8, (9), pp. 45804593.
    3. 3)
      • 9. Khayatian, H., Saadat, R., Abouei, J.: ‘Coalition-based approaches for joint power control and relay selection in cooperative networks’, IEEE Trans. Veh. Technol., 2013, 62, (2), pp. 835842.
    4. 4)
      • 30. Ding, Z., Dai, H., Poor, H.V.: ‘Relay selection for cooperative NOMA’, IEEE Commun. Lett., 2016, 5, (4), pp. 416419.
    5. 5)
      • 20. Gao, C., Li, Y., Zhao, Y., et al: ‘A two-level game theory approach for joint relay selection and resource allocation in network coding assisted D2D communications’, IEEE Trans. Mobile Comput., 2017, 16, (10), pp. 26972711.
    6. 6)
      • 2. Liu, K.J.R., Sadek, A.K., Su, W., et al: ‘Cooperative communications and networking’ (Cambridge University Press, New York, 2008).
    7. 7)
      • 18. Bahbahani, M.S., Baidas, M.W., Alsusa, E.: ‘A distributed political coalition formation framework for multi-relay selection in cooperative wireless networks’, IEEE Trans. Wirel. Commun., 2015, 14, (12), pp. 68696882.
    8. 8)
      • 6. Mach, P., Becvar, Z., Vanek, T.: ‘In-band device-to-device communication in OFDMA cellular networks: a survey and challenges’, IEEE Commun. Surveys Tuts., 2015, 17, (4), pp. 18851922.
    9. 9)
      • 41. Chalkiadakis, G., Elkind, E., Markakis, E., et al: ‘Cooperative games with overlapping coalitions’, J. Artif. Intell. Res., 2010, 39, (1), pp. 179216.
    10. 10)
      • 31. Men, J., Ge, J.: ‘Non-orthogonal multiple access for multiple-antenna relaying networks’, IEEE Commun. Lett., 2015, 19, (10), pp. 16861689.
    11. 11)
      • 37. Zhao, Y., Adve, R., Lim, T.J.: ‘Improving amplify-and-forward relay networks: optimal power allocation versus selection’. Proc. IEEE Int. Symp. on Information Theory, Seattle, WA, USA, 2006, pp. 12341238.
    12. 12)
      • 16. Wu, D., Cai, Y., Zhou, L., et al: ‘A cooperative communication scheme based on coalition formation game in clustered wireless sensor networks’, IEEE Trans. Wirel. Commun., 2012, 11, (3), pp. 11901200.
    13. 13)
      • 32. Kim, J.B., Lee, I.H.: ‘Non-orthogonal multiple access in coordinated direct and relay transmission’, IEEE Commun. Lett., 2015, 19, (11), pp. 20372040.
    14. 14)
      • 42. Rappaport, T.S.: ‘Wireless communications: principles and Practice’ (Prentice-Hall, Upper Saddle River, NJ, 1996).
    15. 15)
      • 11. Huang, J., Han, Z., Chiang, M., et al: ‘Auction-based resource allocation for multi-relay asynchronous cooperative networks’. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 2008, pp. 53565359.
    16. 16)
      • 8. Asadi, A., Mancuso, V., Gupta, R.: ‘DORE: an experimental framework to enable outband D2D relay in cellular networks’, IEEE/ACM Trans. Netw., 2017, 25, (5), pp. 29302943.
    17. 17)
      • 22. Wang, T., Song, L., Han, Z., et al: ‘Overlapping coalition formation games for emerging communication networks’, IEEE Netw., 2016, 30, (5), pp. 4653.
    18. 18)
      • 25. Dai, Z., Wang, Z., Wong, V.W.S.: ‘An overlapping coalitional game for cooperative spectrum sensing and access in cognitive radio networks’, IEEE Trans. Veh. Technol., 2016, 65, (10), pp. 84008413.
    19. 19)
      • 21. Xu, D., Li, Y., Li, J., et al: ‘Joint topology control and resource allocation for network coding enabled D2D traffic offloading’, IEEE Access, 2017, 5, pp. 2291622926.
    20. 20)
      • 5. Asadi, A., Wang, Q., Mancuso, V.: ‘A survey on device-to-device communication in cellular networks’, IEEE Commun. Surveys Tuts., 2014, 16, (4), pp. 18011819.
    21. 21)
      • 26. Yuan, P., Xiao, Y., Bi, G., et al: ‘Toward cooperation by carrier aggregation in heterogeneous networks: a hierarchical game approach’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 16701683.
    22. 22)
      • 29. Ding, Z., Peng, M., Poor, H.V.: ‘Cooperative non-orthogonal multiple access in 5G systems’, IEEE Commun. Lett., 2015, 19, (8), pp. 14621465.
    23. 23)
      • 10. Liang, X., Chen, M., Leung, V.C.M.: ‘A game-theoretic approach for relay assignment over distributed wireless networks’. Proc. IEEE Int. Wireless Communications and Mobile Computing, Istanbul, Turkey, 2011, pp. 15571562.
    24. 24)
      • 12. Baidas, M.W., Bahbahani, M.S.: ‘A game-theoretic approach to relay selection in cooperative wireless networks’. Proc. IEEE Int. Wireless Communications and Mobile Computing, Nicosia, Cyprus, 2014, pp. 375380.
    25. 25)
      • 13. Fudenberg, D., Tirole, J.: ‘Game theory’ (MIT Press, Cambridge, MA, 1993).
    26. 26)
      • 34. Wang, S., Ruby, R., Leung, V.C.M., et al: ‘A low-complexity power allocation strategy to minimize sum-source-power for multi-user single-AF-relay networks’, IEEE Trans. Commun., 2016, 64, (8), pp. 32753283.
    27. 27)
      • 17. Baidas, M.W., MacKenzie, A.B.: ‘Altruistic coalition formation in cooperative wireless networks’, IEEE Trans. Commun., 2013, 61, (11), pp. 46784689.
    28. 28)
      • 33. Zhao, J., Liu, Y., Chai, K.K., et al: ‘Joint subchannel and power allocation for NOMA enhanced D2D communications’, IEEE Trans. Commun., 2017, 65, (11), pp. 50815094.
    29. 29)
      • 39. Saad, W., Han, Z., Debbah, M., et al: ‘Coalitional game theory for communication networks’, IEEE Signal Process. Mag., Special Issue on Game Theory, 2009, 26, (5), pp. 7797.
    30. 30)
      • 14. Wang, B., Han, Z., Liu, K.J.R.: ‘Distributed relay selection and power control for multiuser cooperative communication networks using Stackelberg game’, IEEE Trans. Mobile Comput., 2009, 8, (7), pp. 975990.
    31. 31)
      • 23. Xiao, Y., Chen, K.-C., Yuen, C., et al: ‘A Bayesian overlapping coalition formation game for device-to-device spectrum sharing in cellular networks’, IEEE Trans. Wirel. Commun., 2015, 14, (7), pp. 40344051.
    32. 32)
      • 1. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: ‘Cooperative diversity in wireless networks: efficient protocols and outage behavior’, IEEE Trans. Inf. Theory, 2004, 50, (12), pp. 30623080.
    33. 33)
      • 4. Bangerter, B., Talwar, S., Arefi, R., et al: ‘Networks and devices for the 5G era’, IEEE Commun. Mag., 2014, 52, (2), pp. 9096.
    34. 34)
      • 7. Chen, X., Proulx, B., Gong, X., et al: ‘Exploiting social ties for cooperative D2D communications: a mobile social networking case’, IEEE/ACM Trans. Netw., 2015, 23, (5), pp. 14711484.
    35. 35)
      • 24. Sun, Y., Wu, Q., Wang, J., et al: ‘VERACITY: overlapping coalition formation based double auction for heterogeneous demand and spectrum reusability’, IEEE J. Sel. Areas Commun., 2016, 34, (10), pp. 26902705.
    36. 36)
      • 38. Ryu, H., Park, S.H.: ‘Performance comparison of resource allocation schemes for D2D communications’. Proc. IEEE Wireless Communications and Networking Conf. Workshops, Istanbul, Turkey, 2014, pp. 266270.
    37. 37)
      • 40. Myerson, R.B.: ‘Game theory’ (Harvard University Press, Cambridge, MA, 2013).
    38. 38)
      • 3. Boccardi, F., Heath, R.W., Lozano, A., et al: ‘Five disruptive technology directions for 5G’, IEEE Commun. Mag., 2014, 52, (2), pp. 7480.
    39. 39)
      • 27. Zhao, Y., Li, Y., Wu, D., et al: ‘Overlapping coalition formation game for resource allocation in network coding aided D2D communications’, IEEE Trans. Mobile Comput., 2017, 16, (12), pp. 34593472.
    40. 40)
      • 28. Dai, L., Wang, B., Yuan, Y., et al: ‘Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends’, IEEE Commun. Mag., 2015, 53, (9), pp. 7481.
    41. 41)
      • 19. Asadi, A., Mancuso, V.: ‘Network-assisted outband D2D-clustering in 5G cellular networks: theory and practice’, IEEE Trans. Mobile Comput., 2017, 16, (8), pp. 22462259.
    42. 42)
      • 15. Saad, W., Han, Z., Basar, T., et al: ‘Hedonic coalition formation for distributed task allocation among wireless agents’, IEEE Trans. Mobile Comput., 2011, 10, (9), pp. 13271344.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.1202
Loading

Related content

content/journals/10.1049/iet-com.2017.1202
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading