access icon free Iterative power allocation for throughput maximisation in IA-based cellular networks: two-game approach

As a promising interference management technique, interference alignment (IA) was proposed for improving system capacity and spectral efficiency by precoding and filtering design. However, the previous works assumed the equal power allocation among data streams in IA-based networks, and the sum-rate may fall short of the theoretical maximum without the energy-efficient optimisation. In this study, a novel approach (two-game theoretic) is presented, to solve the rate maximisation problem in the IA-based uplink multiple-input multiple-output cellular networks. First, a two-game analytical framework is presented, where the IA design and power allocation are modelled as two game processes, respectively, and the authors prove that both games have Nash equilibrium solutions. Second, based on the framework, two iterative algorithms of joint IA and power allocation that achieve the maximum sum-rate are proposed. In addition, the authors analyse the sum-rate performance loss under imperfect channel state information (CSI), which depends on the variance of CSI error. Simulation reveals that the sum-rate performances of the proposed iterative algorithms are higher than that of the previous schemes at low signal-to-noise ratio, whose computational complexities are acceptable.

Inspec keywords: radiofrequency interference; wireless channels; precoding; game theory; filtering theory; cellular radio; iterative methods; MIMO communication

Other keywords: spectral efficiency; power allocation; throughput maximisation; CSI error; iterative algorithms; sum-rate performance loss; rate maximisation problem; IA design; imperfect channel state information; Nash equilibrium solutions; two-game analytical framework; two-game theoretic; system capacity; IA-based uplink multiple-input multiple-output cellular networks; interference management technique; filtering design; precoding; two-game approach; iterative power allocation; interference alignment

Subjects: Electromagnetic compatibility and interference; Mobile radio systems; Game theory; Filtering methods in signal processing; Interpolation and function approximation (numerical analysis); Codes

References

    1. 1)
      • 21. Zhao, F., Li, B., Chen, H.: ‘Joint beamforming and power allocation algorithm for cognitive MIMO systems via game theory’, Int. Conf. on Wirel. Algorithms Syst. Appl., Springer, Berlin, Heidelberg, 2012, pp. 166177.
    2. 2)
      • 11. Mungara, R.K., George, G., Lozano, A.: ‘Overhead and spectral efficiency of pilot-assisted interference alignment in time-selective fading channels’, IEEE Trans. Wirel. Commun., 2014, 13, (9), pp. 48844895.
    3. 3)
      • 24. Ma, Y., Li, J., Chen, R., et al: ‘On feasibility of interference alignment for L-cell constant cellular interfering networks’, IEEE Commun. Lett., 2012, 16, (5), pp. 714716.
    4. 4)
      • 25. Liu, T., Yang, C.: ‘On the feasibility of linear interference alignment for MIMO interference broadcast channels with constant coefficients’, IEEE Trans. Signal Process., 2013, 61, (9), pp. 21782191.
    5. 5)
      • 4. Pham, K., Lee, K.: ‘Interference alignment for multicell multiuser MIMO uplink channels’, IEEE Trans. Veh. Technol., 2016, 65, (7), pp. 51465159.
    6. 6)
      • 26. Rosen, J.B.: ‘Existence and uniqueness of equilibrium points for concave n-person games’, Econometrica, 1965, 33, (3), pp. 520534.
    7. 7)
      • 14. Farhadi, H., Wang, C., Skoglund, M.: ‘Distributed transceiver design and power control for wireless MIMO interference networks’, IEEE Trans. Wirel. Commun., 2015, 14, (3), pp. 11991212.
    8. 8)
      • 19. Zhang, H., Du, J., Cheng, J., et al: ‘Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: a non-cooperative game theoretic approach’, IEEE Trans. Wirel. Commun., 2018, 17, (3), pp. 18821892.
    9. 9)
      • 8. Sung, H., Park, S.H., Lee, K.J., et al: ‘Linear precoder designs for K-user interference channels’, IEEE Trans. Wirel. Commun., 2010, 9, (1), pp. 291301.
    10. 10)
      • 2. Hossain, E., Rasti, M., Tabassum, H., et al: ‘Evolution toward 5G multi-tier cellular wireless networks: an interference management perspective’, IEEE Wirel. Commun., 2014, 21, (3), pp. 118127.
    11. 11)
      • 10. Gomadam, K., Cadambe, V.R., Jafar, S.A.: ‘A distributed numerical approach to interference alignment and applications to wireless interference networks’, IEEE Trans. Inf. Theory, 2011, 57, (6), pp. 33093322.
    12. 12)
      • 3. Maddah Ali, M.A., Motahari, A.S., Khandani, A.K.: ‘Communication over MIMO X channels: interference alignment, decomposition, and performance analysis’, IEEE Trans. Inf. Theory, 2008, 54, (8), pp. 34573470.
    13. 13)
      • 5. Kananian, B., Maddah Ali, M.A., Shariatpanahi, S.P., et al: ‘Collaboration alignment in distributed interference management in uplink cellular systems’. IEEE Int. Symp. on Information Theory (ISIT), Barcelona, Spain, July 2016, pp. 14561460.
    14. 14)
      • 16. Panahi, F.H., Ohtsuki, T., Jiang, W., et al: ‘Joint interference alignment and power allocation under perfect and imperfect CSI’. IEEE Global Communications Conf. (GLOBECOM), Washington, DC USA, December 2016, pp. 17.
    15. 15)
      • 15. Zhao, N., Yu, F.R., Sun, H.: ‘Adaptive energy-efficient power allocation in green interference-alignment-based wireless networks’, IEEE Trans. Veh. Technol., 2015, 64, (9), pp. 42684281.
    16. 16)
      • 23. Shu, F., You, X., Wang, M., et al: ‘Hybrid interference alignment and power allocation for multi-user interference MIMO channels’, Sci. China-Inf. Sci., 2013, 56, (4), pp. 19.
    17. 17)
      • 17. Scutari, G., Palomar, D.P., Barbarossa, S.: ‘Optimal linear precoding strategies for wideband noncooperative systems based on game theory-Part I: nash equilibria’, IEEE Trans. Signal. Process., 2008, 56, (3), pp. 12301249.
    18. 18)
      • 1. Zhang, H., Chen, S., Li, X., et al: ‘Interference management for heterogeneous networks with spectral efficiency improvement’, IEEE Wirel. Commun., 2015, 22, (2), pp. 101107.
    19. 19)
      • 20. Popescu, D.C., Rawat, D.B., Popescu, O., et al: ‘Game-theoretic approach to joint transmitter adaptation and power control in wireless systems’, IEEE Trans. Syst. Man Cybern B Cybern, 2010, 40, (3), pp. 675682.
    20. 20)
      • 22. Zhao, F., Wang, W., Chen, H., et al: ‘Interference alignment and game-theoretic power allocation in MIMO heterogeneous sensor networks communications’, Signal Process., 2016, 126, pp. 173179.
    21. 21)
      • 7. Dong, A., Zhang, H., Yuan, D., et al: ‘Interference alignment transceiver design by minimizing the maximum mean square error for MIMO interfering broadcast channel’, IEEE Trans. Veh. Technol., 2016, 65, (8), pp. 60246037.
    22. 22)
      • 13. Bazzi, S., Dietl, G., Utschick, W.: ‘Large system analysis of interference alignment achievable rates for the MIMO interference channel’, IEEE Trans. Signal. Process., 2015, 63, (6), pp. 14901499.
    23. 23)
      • 6. Lee, H.H., Kim, M.J., Ko, Y.C.: ‘Transceiver design based on interference alignment in MIMO interfering broadcast channels’, IEEE Trans. Wirel. Commun., 2014, 13, (11), pp. 64746483.
    24. 24)
      • 18. Scutari, G., Palomar, D.P., Facchinei, F., et al: ‘Convex optimization, game theory, and variational inequality theory’, IEEE Signal. Process. Mag., 2010, 27, (3), pp. 3549.
    25. 25)
      • 9. Wang, C., Gou, T., Jafar, S.A.: ‘Subspace alignment chains and the degrees of freedom of the three-user MIMO interference channel’, IEEE Trans. Inf. Theory, 2014, 60, (5), pp. 24322479.
    26. 26)
      • 12. Aquilina, P., Ratnarajah, T.: ‘Performance analysis of IA techniques in the MIMO IBC with imperfect CSI’, IEEE Trans. Commun., 2015, 63, (4), pp. 12591270.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0853
Loading

Related content

content/journals/10.1049/iet-com.2017.0853
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading