Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free STTC design for vehicular communication systems employing fixed-gain AF PLNC over cascaded fading channels

In this study, the authors combine physical layer network coding (PLNC) and space-time trellis coding (STTC) techniques to improve the error performance of vehicle-to-vehicle (V2V) communication systems where all fading channels are assumed to undergo double Rayleigh fading (DRF) which is worse than Rayleigh fading used in cellular communications. In the authors' analysis, they show that the DRF channels can be modelled by using the mixture gamma distribution. After that, pairwise error probability (PEP) analysis is performed for a fixed-gain amplify-and-forward PLNC V2V system employing STTC over the DRF channels, and an upper bound for the PEP is obtained. By examining the behaviour of the upper bound expression in the high SNR region, they derive a new design criterion for STTCs. Finally, using this criterion they propose novel STTCs with 4 and 8 states for V2V systems employing PLNC over the DRF channels.

References

    1. 1)
      • 37. Canpolat, O., Uysal, M., Fareed, M.M.: ‘Analysis and design of distributed space-time trellis codes with amplify-and-forward relaying’, IEEE Trans. Veh. Tech., 2007, 56, (4), pp. 16491660.
    2. 2)
      • 43. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Elsevier Inc., London, UK, 2007, 7th edn.).
    3. 3)
      • 7. Salo, J., El-Sallabi, H., Vainikainen, P.: ‘The distribution of the product of independent Rayleigh random variables’, IEEE Trans. Antennas Propag., 2006, 54, (2), pp. 639643.
    4. 4)
      • 16. Bashar, F., Abhayapala, T.D.: ‘Performance analysis of spatially distributed MIMO systems’, IET Commun., 2017, 11, (4), pp. 566575.
    5. 5)
      • 27. Ahlswede, R., Cai, N., Li, S.Y.R., et al: ‘Network information flow’, IEEE Trans. Inf. Theory, 2000, 46, (4), pp. 12041216.
    6. 6)
      • 13. Nabar, R.U., Bolchskei, H., Kneubuhler, F.W.: ‘Fading relay channels: Performance limits and space-time signal design’, IEEE J. Sel. Areas Commun., 2004, 22, (6), pp. 10991109.
    7. 7)
      • 19. Tarokh, V., Seshadri, N., Calderbank, A.R.: ‘Space-time codes for high data rate wireless communication: performance criteria and code construction’, IEEE Trans. Inf. Theory, 1998, 44, (2), pp. 744765.
    8. 8)
      • 15. Yang, S., Hanzo, L.: ‘Fifty years of MIMO detection: the road to large-scale MIMOs’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 19411988.
    9. 9)
      • 4. Andersen, J.B.: ‘Statistical distributions in mobile communications using multiple scattering’. URSI General Assembly, Maastricht, The Netherlands, 2002.
    10. 10)
      • 25. González, D.C., Da Costa, D.B., Filho, J.C.S.S.: ‘Distributed TAS/MRC and TAS/SC schemes for fixed-gain AF systems with multiantenna relay: outage performance’, IEEE Trans. Wirel. Commun., 2016, 15, (6), pp. 43804392.
    11. 11)
      • 11. Atapattu, S., Tellambura, C., Jiang, H.M.: ‘A mixture gamma distribution to model the SNR of wireless channels’, IEEE Trans. Wirel. Commun., 2011, 10, (12), pp. 41934203.
    12. 12)
      • 26. Yue, X., Liu, Y., Kang, S., et al: ‘Performance analysis of NOMA with fixed gain relaying over Nakagami-m fading channels’, IEEE Access, 2017, 5, pp. 54455454.
    13. 13)
      • 30. Liew, S.C., Zhang, S., Lu, L.: ‘Physical-layer network coding: tutorial, survey, and beyond’, Physical Comm., 2013, 6, pp. 442.
    14. 14)
      • 33. Shakeri, R., Khakzad, H., Taherpour, A., et al: ‘Performance of two-way multi-relay inter-vehicular cooperative networks’. IEEE Wireless Communication and Network Coding Conf., İstanbul, Turkey, April 2014.
    15. 15)
      • 2. Molish, A.F., Tufvesson, F., Karedal, J., et al: ‘A survey on vehicle-to-vehicle propagation channels’, IEEE Wirel. Commun., 2009, 38, (6), pp. 1222.
    16. 16)
      • 14. Shin, H., Lee, J.H.: ‘Effect of keyholes on the symbol error rate of space-time block codes’, IEEE Commun. Lett., 2003, 7, (1), pp. 2729.
    17. 17)
      • 31. Zhang, C., Ge, J., Li, J., et al: ‘Performance analysis for mobile-relay-based M2M two-way AF relaying in N*Nakagami-m fading’, IET Electron. Lett., 2013, 49, (5), pp. 344346.
    18. 18)
      • 21. Murphy, P., Sabharwal, A.: ‘Design, implementation, and characterization of a cooperative communications system’, IEEE Trans. Veh. Technol., 2011, 60, (21), pp. 25342544.
    19. 19)
      • 36. Ata, S.Ö., Altunbaş, İ.: ‘Joint relay and antenna selection in MIMO PLNC inter-vehicular communication systems over cascaded fading channels’, Wirel. Pers. Commun., 2017, 92, (3), pp. 901923.
    20. 20)
      • 39. Beygi, S., Kafashan, M., Bahrami, H.R., et al: ‘Space–time trellis codes for two-way relay MIMO channels with single-antenna relay nodes’, IEEE Trans. Veh. Tech., 2013, 62, (8), pp. 40404045.
    21. 21)
      • 8. Shin, H., Win, M.: ‘MIMO diversity in the presence of double scattering’, IEEE Trans. Inf. Theory, 2008, 54, (7), pp. 29762996.
    22. 22)
      • 6. Ergec, V., Fortune, S.J., Ling, J., et al: ‘Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments’, IEEE J. Sel. Areas Commun., 1997, 15, (4), pp. 677684.
    23. 23)
      • 44. Jung, J., Lee, S., Park, H., et al: ‘Capacity and error probability analysis of diversity reception schemes over generalized-K fading channels using a mixture gamma distribution’, IEEE Trans. Wirel. Commun., 2014, 13, (9), pp. 47214730.
    24. 24)
      • 29. Zhang, S., Liew, S.C., Lam, P.: ‘Hot topic: physical layer network coding’. Proc. Annual Int. Conf. Communications Signal Processing, California, USA, September 2006.
    25. 25)
      • 17. Rentapalli, V.R., Khan, Z.J.: ‘MIMO and smart antenna technologies for 3G and 4G’, Commun. Comput. Inf. Sci., 2011, 147, pp. 493498.
    26. 26)
      • 42. Gazor, S., AlSuhaili, K.: ‘Communications over the best singular mode of a reciprocal MIMO channel’, IEEE Trans. Commun., 2010, 58, (7), pp. 19932001.
    27. 27)
      • 32. Ata, S.Ö., Altunbaş, İ.: ‘Fixed gain AF PLNC over cascaded Nakagami-m fading channels for vehicular communications’, AEU - Int. J. Electron. Commun., 2016, 70, (4), pp. 510516.
    28. 28)
      • 5. Salo, J., El-Sallabi, H., Vainikainen, P.: ‘Statistical analysis of the multiple scattering radio channel’, IEEE Trans. Antennas Propag., 2006, 54, (11), pp. 31143124.
    29. 29)
      • 35. Ata, S.Ö., Altunbaş, İ.: ‘Relay antenna selection for V2V communications using PLNC over cascaded fading channels’. IEEE Int. Wireless Communications and Mobile Computing Conf., Dubrovnik, Croatia, June 2015, pp. 13361340.
    30. 30)
      • 40. Sanayei, S., Hedayat, A., Nosratinia, A.: ‘Space time codes in keyhole channels: analysis and design’, IEEE Trans. Wirel. Commun., 2007, 6, (6), pp. 20062011.
    31. 31)
      • 28. Li, S.Y.R., Yeung, R.W., Cai, N.: ‘Linear network coding’, IEEE Trans. Inf. Theory, 2003, 49, (2), pp. 371381.
    32. 32)
      • 10. Karagiannidis, G.K., Sagias, N.C., Mathiopoulos, P.T.: ‘N*Nakagami: a novel stochastic model for cascaded fading channels’, IEEE Trans. Commun., 2007, 55, (8), pp. 14531458.
    33. 33)
      • 12. Wang, C.X., Cheng, X., David, I.L.: ‘Vehicle-to-vehicle channel modeling and measurements: Recent advances and future challenges’, IEEE J. Sel. Areas Commun., 1997, (15, (11), pp. 677684.
    34. 34)
      • 23. Chen, Z., Li, T., Fan, P., et al: ‘Cooperation in 5G heterogeneous networking: Relay scheme combination and resource allocation’, IEEE Trans. Commun., 2016, 64, (8), pp. 34303443.
    35. 35)
      • 1. Sen, I., Matolak, D.W.: ‘Vehicle-vehicle channel models for the 5 GHz band’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (2), pp. 235245.
    36. 36)
      • 9. Zlatanov, N., Velkov, Z.H., Karagiannidis, G.K.: ‘Level crossing rate and average fade duration of the double Nakagami-m random process and application in MIMO keyhole fading channels’, IEEE Commun. Lett., 2008, 12, (11), pp. 822824.
    37. 37)
      • 38. Ilhan, H., Altunbaş, İ, Uysal, M.: ‘Novel distributed space-time trellis codes for relay systems over cascaded Rayleigh fading’, IEEE Commun. Lett., 2010, 14, (12), pp. 11401142.
    38. 38)
      • 18. El-Mashed, M.G., El-Rabaie, S.: ‘Service enhancement for user equipments in LTE-A downlink physical layer network’, Wirel. Pers. Commun., 2015, 83, (1), pp. 149161.
    39. 39)
      • 3. Matolak, D., Frolik, J.: ‘Worse-than-Rayleigh fading: experimental results and theoretical models’, IEEE Trans. Antennas Propag., 2011, 49, (4), pp. 140146.
    40. 40)
      • 24. Hussain, A., Kim, S.H., Chang, S.H.: ‘Dual-hop variable-gain AF relaying with beamforming over kμ shadowed fading channels’. IEEE Global Communications Conf., Washington, USA, December 2016, pp. 16.
    41. 41)
      • 20. Vucetic, B., Yuan, J.: ‘Space-time coding’ (John Wiley and Sons Inc., West Sussex, UK, 2003).
    42. 42)
      • 34. Shirkhani, M., Tirkan, Z., Taherpour, A.: ‘Performance analysis and optimization of two-way cooperative communications in inter-vehicular networks’. Wireless Communication and Signal Proc. Conf., Huangshan, China, October 2012.
    43. 43)
      • 41. Firmanto, W., Vucetic, B., Yuan, J.: ‘Space-time TCM with improved performance on fast fading channels’, IEEE Commun. Lett., 2001, 5, (4), pp. 154156.
    44. 44)
      • 22. Leneman, J.N., Wornell, G.W.: ‘Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks’, IEEE Trans. Inf. Theory, 2003, 49, (10), pp. 24152425.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0702
Loading

Related content

content/journals/10.1049/iet-com.2017.0702
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address