Your browser does not support JavaScript!

Playback continuity and video quality driven optimisation for dynamic adaptive streaming over HTTP clients over wireless networks

Playback continuity and video quality driven optimisation for dynamic adaptive streaming over HTTP clients over wireless networks

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors focus on segment characteristic analysis and joint optimisation of modulation and coding scheme (MCS) selection, resource block (RB) assignment and the block error ratio (BLER) determination and segment adaptation scheme to satisfy dynamic adaptive streaming over HTTP (DASH) clients over wireless networks. First, the authors define a utility function as the continuous playback time that the packets scheduled with the allocated resource can support. Then, the authors formulate the MCS selection, RB assignment and BLER determination into a mathematical model. The relationship among the above three factors can be explored instead of performing MCS selection and RB assignment with the fixed BLER. By decomposing the original problem into some sub-problems, the authors can get a solution to the original problem with low complexity. At the client level, the authors develop an adaptive segment request strategy based on the playback information, the segments' characteristics and the estimated transmission rate. To decrease the influence of the inaccurate estimations, an adaptive guard time interval based on the real playback information and transmission information of the previous segments is introduced. Simulation results show that the proposed algorithm can efficiently improve playback continuity and video quality over the existing algorithms.


    1. 1)
      • 23. Spiteri, K., Urgaonkar, R., Sitaraman, R.K.: ‘BOLA: Near optimal bitrate adaptation for online videos’. Proc. IEEE INFOCOM, San Francisco, USA, 2016, pp. 19.
    2. 2)
      • 12. Kwan, R., Leung, C., Zhang, J.: ‘Proportional fair multiuser scheduling in LTEIEEE Signal Process. Lett.’, 2009, 16, (6), pp. 461464.
    3. 3)
      • 9. He, L., Liu, G.: ‘A playback continuity driven resource allocation scheme based on the S-P model for video streaming clients’. Proc. IEEE Int. Conf. on Multimedia and Expo (ICME), Torino, Italy, 2015, pp. 16.
    4. 4)
      • 1. 3GPP TS 26.247: Transparent end-to-end Packetswitched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GPDASH), in v14.2.0 (Release 14), 2017.
    5. 5)
      • 6. Kupka, T., Halvorsen, P., Griwodz, C.: ‘An evaluation of live adaptive http segment streaming request strategies’. Proc. IEEE Local Computer Networks (LCN), Bonn, Germany, 2011, pp. 604612.
    6. 6)
      • 13. Andrews, M., Kumaran, K., Vijayakumar, R., et al: ‘Providing quality of service over a shared wireless link’, IEEE Commun. Mag., 2007, 39, (2), pp. 150154.
    7. 7)
      • 8. Kua, J., Armitage, G., Branch, P.: ‘A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP’, IEEE Commun. Surv. Tutor., 2017, 19, (3), pp. 18421866.
    8. 8)
      • 30. JM16.2: ‘Available at:, 2015.
    9. 9)
      • 25. Bouten, N., Latr, S., Famaey, J., et al: ‘In-network quality optimization for adaptive video streaming services’, IEEE Trans. Multimed., 2014, 16, (8), pp. 22812293.
    10. 10)
      • 15. Yao, R., Liu, Y., Liu, J., et al: ‘Utility-based H.264/SVC video streaming over multi-channel cognitive radio networks’, IEEE Trans. Multimedia, 2015, 17, (3), pp. 434449.
    11. 11)
      • 10. Borst, S.: ‘User-level performance of channel-aware scheduling algorithms in wireless data networks’, IEEE/ACM Trans. Netw., 2005, 13, (3), pp. 636647.
    12. 12)
      • 18. Oyman, O., Singh, S.: ‘Quality of experience for http adaptive streaming services’, IEEE Commun. Mag., 2012, 50, (4), pp. 2027.
    13. 13)
      • 2. Sandvine Global Internet Phenomena Report: ‘Available at:, 2015.
    14. 14)
      • 27. Dahlman, E., Parkvall, S., Beming, P.: ‘3G evolution: HSPA and LTE for mobile broadband’ (Academic Press, Cambridge, USA, 2007).
    15. 15)
      • 28. NS3: ‘Available at:, 2016.
    16. 16)
      • 16. Byung, J., Chen, C.: ‘A cross-layer approach to multichannel MAC protocol design for video streaming over wireless ad hoc networks’, IEEE Trans. Multimedia, 2009, 11, (6), pp. 10521061.
    17. 17)
      • 29. Video Sequences, YUV: ‘Available at:, 2017.
    18. 18)
      • 11. Al-Manthari, B, Hassanein, H, Nasser, N: ‘Packet scheduling in 3.5 g high-speed downlink packet access networks: breadth and depth’, IEEE Netw., 2007, 21, (1), pp. 4146.
    19. 19)
      • 31. Gouache, S., Bichot, G., Bsila, A., et al: ‘Distributed and adaptive http streaming’. Proc. IEEE Int. Conf. on Multimedia and Expo (ICME), Barcelona, Catalonia, Spain, 2011, pp. 16.
    20. 20)
      • 19. Vleeschauwer, D., Viswanathan, H., Beck, A., et al: ‘Optimization of http adaptive streaming over mobile cellular networks’. Proc. IEEE INFOCOM, Turin, Italy, 2013, pp. 898997.
    21. 21)
      • 4. Jiang, J., Sekar, V., Zhang, H.: ‘Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive’, IEEE/ACM Trans. Netw., 2014, 22, (1), pp. 326340.
    22. 22)
      • 26. Zhao, M., Gong, X., Liang, J., et al: ‘QoE-driven cross-layer optimization for wireless dynamic adaptive streaming of scalable videos over HTTP’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (3), pp. 451465.
    23. 23)
      • 24. Essaili, A., Schroeder, D., Steinbach, E., et al: ‘QoE-based traffic and resource management for adaptive HTTP video delivery in LTE’, IEEE Trans. Circuits Syst. Video Techn., 2015, 25, (6), pp. 9881001.
    24. 24)
      • 3. White Paper: Cisco VNI Forecast and Methodology ‘Available at:, 2016, pp. 20152020.
    25. 25)
      • 14. Piro, G., Grieco, L.-A., Boggia, G., et al: ‘Two-level downlink scheduling for real-time multimedia services in LTE networks’, IEEE Trans. Multimedia, 2011, 13, (5), pp. 10521065.
    26. 26)
      • 5. Thang, T.C., Le, H.T., Pham, A.T., et al: ‘An evaluation of bitrate adaptation methods for HTTP live streaming’, IEEE J. Sel. Areas Commun., 2014, 32, (4), pp. 693705.
    27. 27)
      • 7. Yin, X., Jindal, A., Sekar, V., et al: ‘'A controltheoretic approach for dynamic adaptive video streaming over HTTP’. Proc. ACM Special Interest Group on Data Communication (SIGCOMM), London, UK, 2015, pp. 325338.
    28. 28)
      • 21. Lai, C.-F., Hwang, R.-H., Chao, H.-C., et al: ‘A buffer-aware HTTP live streaming approach for SDN-enabled 5G wireless networks’, IEEE Netw., 2015, 29, (1), pp. 4955.
    29. 29)
      • 17. Hui, D.-S.-W., Lau, V.-K.-N., Lam, W.-H.: ‘Cross-layer design for OFDMA wireless systems with heterogeneous delay requirements’, IEEE Trans. Wirel. Commun., 2007, 6, (7), pp. 28722880.
    30. 30)
      • 22. Huang, T.-Y., Johari, R., McKeown, N., et al: ‘A buffer-based approach to rate adaptation: Evidence from a large video streaming service’. Proc. ACM Conf. Special Interest Group on Data Communication (SIGCOMM), Chicago, USA, 2014, pp. 187198.
    31. 31)
      • 20. Cong, T., Le, H.-T., Nguyen, H.-X., et al: ‘Adaptive video streaming over http with dynamic resource estimation’, IEEEJ Commun. Netw., 2013, 15, (6), pp. 635644.

Related content

This is a required field
Please enter a valid email address