Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Resource allocation for OFDM-based improved DF relaying

This study considers an improved decode and forward (DF) protocol in an orthogonal frequency division multiplexing-based cooperative system, where the improved DF protocol implies that the source node is allowed to emit the same symbol in the second phase as that in the first phase, irrespective to whether the relay is idle or not. Because rate provision is one of the main design goals in wireless network, the authors construct an optimisation problem to improve the overall sum rate of the system and propose a joint power allocation and subcarrier pairing algorithm. Total power constraint and individual power constraints at the source node and the relay node will be treated differently. Both theoretical analysis and simulation results demonstrate that the authors' proposed joint algorithm for the improved DF protocol drastically harvests remarkable gains from the extra repeat transmission in the second phase and is superior to other existing methods.

References

    1. 1)
      • 4. Liu, Z.H., Xu, W.J., Li, S.Y., et al.: ‘Network-coded primary-secondary cooperation in OFDM-based cognitive multicast networks’, Eurasip J. Wirel. Commun. Netw., 2015, 2015, pp. 113.
    2. 2)
      • 12. Zhang, X.X., Shen, X.M., Xie, L.L.: ‘Joint subcarrier and power allocation for cooperative communications in LTE-advanced networks’, IEEE Trans. Wirel. Commun., 2014, 13, (2), pp. 658668.
    3. 3)
      • 9. Jin, Z.W., Wang, T., Wei, J.B., et al.: ‘Distributed algorithms for sum rate maximization in multi-cell downlink OFDMA with opportunistic DF relaying’, Eurasip J. Wirel. Commun. Netw., 2014, 2014, pp. 120.
    4. 4)
      • 14. Jin, Z.W., Wang, T., Wei, J.B., et al.: ‘Sum rate maximization for multi-cell downlink OFDMA with subcarrier pair-based opportunistic DF relaying’, Eurasip J. Wirel. Commun. Netw., 2014, 2014, pp. 118.
    5. 5)
      • 19. Jeong, C., Kim, I.M.: ‘Optimal power allocation for secure multicarrier relay systems’, IEEE Trans. Signal Process., 2011, 59, (11), pp. 54285442.
    6. 6)
      • 16. Liu, Y., Tao, M.X.: ‘Optimal channel and relay assignment in OFDM-based multi-relay multi-pair two-way communication networks’, IEEE Trans. Commun., 2012, 60, (2), pp. 317321.
    7. 7)
      • 18. Liu, Y., Chen, W.: ‘Limited-feedback-based adaptive power allocation and subcarrier pairing for OFDM DF relay networks with diversity’, IEEE Trans. Veh. Technol., 2012, 61, (6), pp. 25592571.
    8. 8)
      • 3. Li, P., Guo, S., Hu, J.K.: ‘Energy-efficient cooperative communications for multimedia applications in multi-channel wireless networks’, IEEE Trans. Comput., 2015, 64, (6), pp. 16701679.
    9. 9)
      • 17. Hsu, C.N., Su, H.J., Lin, P.H.: ‘Joint subcarrier pairing and power allocation for OFDM transmission with decode-and-forward relaying’, IEEE Trans. Signal Process., 2011, 59, (1), pp. 399414.
    10. 10)
      • 13. Ma, Y.M., Liu, A., Hua, Y.B.: ‘A dual-phase power allocation scheme for multicarrier relay system with direct link’, IEEE Trans. Signal Process., 2014, 62, (1), pp. 516.
    11. 11)
      • 1. Moharir, S., Shakkottai, S.: ‘Maxweight vs. backpressure: routing and scheduling in multi-channel relay networks’, IEEE/ACM Trans. Netw., 2015, 23, (5), pp. 15841598.
    12. 12)
      • 6. Liu, L., Li, Y., Su, Y.P., et al.: ‘Quantize-and-forward strategy for interleave-division multiple-access relay channel’, IEEE Trans. Veh. Technol., 2016, 65, (3), pp. 18081814.
    13. 13)
      • 5. Liu, L., Liang, Y.Z., Li, Y.: ‘A new upper bound on the achievable rate of relay channel with MIP-QF strategy’, IEEE Trans. Veh. Technol., 2017, 66, (8), pp. 67876800.
    14. 14)
      • 11. Ng, D.W.K., Schober, R.: ‘Resource allocation and scheduling in multi-cell OFDMA systems with decode-and-forward relaying’, IEEE Trans. Wirel. Commun., 2011, 10, (7), pp. 22462258.
    15. 15)
      • 15. Ng, D.W.K., Lo, E.S., Schober, R.: ‘Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity’, IEEE Trans. Wirel. Commun., 2012, 11, (10), pp. 36183631.
    16. 16)
      • 10. Kim, D.G., Sung, Y.C., Chung, J.H.: ‘Filter-and-forward relay design for MIMO-OFDM systems’, IEEE Trans. Commun., 2014, 62, (7), pp. 23292339.
    17. 17)
      • 8. Jeon, W.S., Han, J.A., Jeong, D.G.: ‘Distributed resource allocation for multi-cell relay-aided OFDMA systems’, IEEE Trans. Mob. Comput., 2014, 13, (9), pp. 20032015.
    18. 18)
      • 7. Soussi, M.E., Zaidi, A., Vandendorpe, L.: ‘DF-based sum-rate optimization for multicarrier multiple access relay channel’, Eurasip J. Wirel. Commun. Netw., 2015, 2015, pp. 119.
    19. 19)
      • 20. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, UK, 2004).
    20. 20)
      • 2. Grebla, R.C.G.: ‘Multi-dimensional OFDMA scheduling in a wireless network with relay nodes’, IEEE/ACM Trans. Netw., 2015, 23, (6), pp. 17651776.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0447
Loading

Related content

content/journals/10.1049/iet-com.2017.0447
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address