Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficient antenna allocation algorithms in millimetre wave wireless communications

Recently, a considerable research interest has grown up in the millimetre wave wireless system as the most promising technologies in the next generation communication. Since high-frequency channels of the millimetre wave are easily attenuated in space, beamforming technology relying on the massive multi-input-multi-output system is introduced to transmit the millimetre wave in a very narrow directional beam, so as to greatly improve the transmit efficiency. Then a challenging problem lies in that how to optimise the overall throughput by allocating the antenna resources to different mobile users in the massive MIMO antenna system. In this study, the authors handle such a difficult problem in two different cases. They first begin with the one-direction case, i.e. all sub-arrays are deployed in several parallel rows along the edge of a rectangle antenna array. They decompose the problem and solve it gradually. Then they generalise the authors' result to the two-dimensional case, where the sub-arrays can be deployed in orthogonal directions. They apply the similar scheme, decompose the problem and solve each sub-problem progressively. Both NP-hard problems are solved with time efficient approximation algorithms. Simulation results demonstrate the efficiency of the proposed algorithms in different cases.

References

    1. 1)
      • 19. Li, H., Song, L., Debbah, M.: ‘Energy efficiency of large-scale multiple antenna systems with transmit antenna selection’, IEEE Trans. Commun., 2014, 62, (2), pp. 638647.
    2. 2)
      • 22. Venkateswaran, V., van der Veen, A.-J.: ‘Analog beamforming in mimo communications with phase shift networks and online channel estimation’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 41314143.
    3. 3)
      • 20. Driouch, E., Ajib, W.: ‘Efficient scheduling algorithms for multiantenna cdma systems’, IEEE Trans. Veh. Technol., 2012, 61, (2), pp. 521532.
    4. 4)
      • 30. Sohrabi, F., Yu, W.: ‘Hybrid digital and analog beamforming design for large-scale antenna arrays’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 501513.
    5. 5)
      • 21. Benmimounce, M., Driouch, E., Ajib, W., et al: ‘Joint transmit antenna selection and user scheduling for massive mimo systems’. IEEE Wireless Communications and Networking Conf. (WCNC), 2015, pp. 381386.
    6. 6)
      • 33. Sulyman, A.I., Alwarafy, A., MacCartney, G.R., et al: ‘Directional radio propagation path loss models for millimeter-wave wireless networks in the 28-, 60-, and 73-ghz bands’, IEEE Trans. Wirel. Commun., 2016, 15, (10), pp. 69396947.
    7. 7)
      • 18. Gharavi, M., Gershman, A.: ‘Fast antenna subset selection in mimo systems’, IEEE Trans. Signal Process., 2004, 52, (2), pp. 339347.
    8. 8)
      • 10. Doan, C.H., Emami, S., Sobel, D.A., et al: ‘Design considerations for 60 ghz cmos radios’, IEEE Commun. Mag., 2004, 42, (12), pp. 132140.
    9. 9)
      • 12. El Ayach, O., Rajagopal, S., Abu-Surra, S., et al: ‘Spatially sparse precoding in millimeter wave mimo systems’, IEEE Trans. Wirel. Commun., 2014, 13, (3), pp. 14991513.
    10. 10)
      • 36. Steinberg, A.: ‘A strip-packing algorithm with absolute performance bound 2’, SIAM. J. Comput., 1997, 26, (2), pp. 401409.
    11. 11)
      • 27. Kim, C., Kim, T., Seol, J.-Y.: ‘Multi-beam transmission diversity with hybrid beamforming for mimo-ofdm systems’. 2013 IEEE Globecom Workshops (GC Wkshps), 2013, pp. 6165.
    12. 12)
      • 9. Roh, W., Seol, J.-Y., Park, J., et al: ‘Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results’, IEEE Commun. Mag., 2014, 52, (2), pp. 106113.
    13. 13)
      • 31. Rappaport, T.S., Gutierrez, F., Ben-Dor, E., et al: ‘Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications’, IEEE Trans. Antennas Propag., 2013, 61, (4), pp. 18501859.
    14. 14)
      • 7. Sulyman, A.I., Nassar, A.T., Samimi, M.K., et al: ‘Radio propagation path loss models for 5G cellular networks in the 28 ghz and 38 ghz millimeter-wave bands’, IEEE Commun. Mag., 2014, 52, (9), pp. 7886.
    15. 15)
      • 2. Li, C., He, S., Shi, Z., et al: ‘Optimizing the throughput of millimeter wave wireless communications’. 2016 IEEE Int. Conf. Communications (ICC), 2016, pp. 16.
    16. 16)
      • 5. Qian, L.P., Wu, Y., Zhou, H., et al: ‘Joint uplink base station association and power control for small-cell networks with non-orthogonal multiple access’, IEEE Trans. Wirel. Commun., 2017, 16, (9), pp. 55675582.
    17. 17)
      • 29. Liang, L., Xu, W., Dong, X.: ‘Low-complexity hybrid precoding in massive multiuser mimo systems’, IEEE Wirel. Commun. Lett., 2014, 3, (6), pp. 653656.
    18. 18)
      • 25. Molisch, A.F., Ratnam, V.V., Han, S., et al‘Hybrid beamforming for massive mimo – a survey’, 2016, arXiv preprint arXiv:1609.05078.
    19. 19)
      • 11. Wang, J.: ‘Beam codebook based beamforming protocol for multi-gbps millimeter-wave wpan systems’, IEEE J. Sel. Areas Commun., 2009, 27, (8), pp. 13901399.
    20. 20)
      • 26. Huang, X., Guo, Y.J., Bunton, J.D.: ‘A hybrid adaptive antenna array’, IEEE Trans. Wirel. Commun., 2010, 9, (5), pp. 17701779.
    21. 21)
      • 28. Alkhateeb, A., El Ayach, O., Leus, G., et al: ‘Hybrid precoding for millimeter wave cellular systems with partial channel knowledge’. IEEE Information Theory and Applications Workshop (ITA 2013), 2013, pp. 15.
    22. 22)
      • 23. Sun, S., Rappaport, T., Heath, R., et al: ‘Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?’, IEEE Commun. Mag., 2014, 52, (12), pp. 110121.
    23. 23)
      • 24. Han, S., Chih-Lin, I., Xu, Z., et al: ‘Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G’, IEEE Commun. Mag., 2015, 53, (1), pp. 186194.
    24. 24)
      • 16. Zhou, C., Gu, Y., He, S., et al: ‘A robust and efficient algorithm for coprime array adaptive beamforming’, IEEE Trans. Veh. Technol., 2017, PP, (99), pp. 11.
    25. 25)
      • 1. Noh, J., Kim, T., Seol, J.-Y., et al: ‘Zero-forcing based hybrid beamforming for multi-user millimeter wave systems’, IET Commun., 2016, 10, (18), pp. 26702677.
    26. 26)
      • 14. Li, J., Chen, J., Lai, T.H.: ‘Energy-efficient intrusion detection with a barrier of probabilistic sensors’. IEEE 2012 Proc. INFOCOM, 2012, pp. 118126.
    27. 27)
      • 6. Andrews, J.G., Buzzi, S., Choi, W., et al: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    28. 28)
      • 34. Carlson, D.: ‘Covariance matrix estimation errors and diagonal loading in adaptive arrays’, IEEE Trans. Aerosp. Electron. Syst., 1988, 24, (4), pp. 397401.
    29. 29)
      • 17. Shi, Z., Zhou, C., Gu, Y., et al: ‘Source estimation using coprime array: a sparse reconstruction perspective’, IEEE Sens. J., 2017, 17, (3), pp. 755765.
    30. 30)
      • 8. Li, Y., Gu, Y., Shi, Z., et al: ‘Robust adaptive beamforming based on particle filter with noise unknown’, Prog. Electromagn. Res., 2009, 90, pp. 151169.
    31. 31)
      • 15. Chen, J., Li, J., Lai, T.H.: ‘Trapping mobile targets in wireless sensor networks: An energy-efficient perspective’, IEEE Trans. Veh. Technol., 2013, 62, (7), pp. 32873300.
    32. 32)
      • 4. Araújo, D.C., Maksymyuk, T., de Almeida, A.L., et al: ‘Massive mimo: survey and future research topics’, IET Commun., 2016, 10, (15), pp. 19381946.
    33. 33)
      • 3. Wu, Y., Chen, J., Qian, L.P., et al: ‘Energy-aware cooperative traffic offloading via device-to-device cooperations: an analytical approach’, IEEE Trans. Mob. Comput., 2017, 16, (1), pp. 97114.
    34. 34)
      • 35. Bansal, M., Venkaiah, V.: ‘Improved fully polynomial time approximation scheme for the 0-1 multiple-choice knapsack problem’. Tech Report, International Institute of Information Technology, 2004.
    35. 35)
      • 13. Gershman, A., Sidiropoulos, N., Shahbazpanahi, S., et al: ‘Convex optimization-based beamforming: From receive to transmit and network designs’, IEEE Signal Process. Mag., 2010, 27, (3), pp. 6275.
    36. 36)
      • 32. Rappaporte, T., Sun, S., Mayzus, R., et al: ‘Millimeter wave mobile communications for 5G cellular: It will work!’, IEEE Access, 2013, 1, pp. 335349.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0399
Loading

Related content

content/journals/10.1049/iet-com.2017.0399
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address