Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust and efficient beam training scheme for millimetre wave indoor communications

Antenna beamforming is a key enabler for the deployment of reliable millimetre wave communication systems. Indoor millimetre wave network standards have adopted a multi-stage codebook-based beam training protocol with an objective to reduce the number of preamble transmissions required to identify the optimum transmit–receive beam pair. Multi-stage beam training schemes entail moderate search complexity; however certain implementation level challenges have an adverse impact on the search success efficiency. Moreover, it is desirable to reduce the complexity further in a dynamic environment with limited mobility where beam training needs to be repeated often. In this tudy, he authors develop a low-complexity algorithm for millimetre wave beam training within a heuristic numerical optimisation framework. Based on the classical Rosenbrock direct search method, he authors propose a threshold acceptance feature augmented with a divide-and-conquer strategy and direction of arrival aided initialisation, specifically to provide resilience to link blockage and enhance the search success performance, respectively. The method facilitates ease of implementation, and is applicable to generic phased array architectures irrespective of array geometry. he authors further evaluate the system bit error rate to benchmark the performance of the proposed scheme vis-a-vis optimal beamforming schemes.

References

    1. 1)
      • 12. Li, B., Zhou, Z., Zou, W., et al: ‘On the efficient beam-forming training for 60 GHz wireless personal area networks’, IEEE Trans. Wirel. Commun., 2013, 12, (2), pp. 504515.
    2. 2)
      • 23. Gosset (Student), W.G.: ‘The probable error of a mean’, Biometrika, 1908, 6, (1), pp. 125.
    3. 3)
      • 7. ‘Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 3: enhancements for very high throughput in the 60 GHz band’. IEEE Std. 802.11ad-2012, 2012.
    4. 4)
      • 4. Roh, W., Seol, J.Y., Park, J., et al: ‘Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results’, IEEE Commun. Mag., 2014, 52, pp. 106113.
    5. 5)
      • 2. Hansen, C.: ‘WiGig: multi-gigabit wireless communications in the 60 GHz band’, IEEE Wirel. Commun. Mag., 2011, 18, pp. 67.
    6. 6)
      • 3. Rappaport, T.S., Heath, R.W.Jr., Daniels, R.C., et al: ‘Millimeter wave wireless communications’ (Prentice Hall, 2014).
    7. 7)
      • 17. Yuan, W., Armour, S.M.D., Doufexi, A.: ‘An efficient and low-complexity beam training technique for mmWave communication’. IEEE 26th Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), 2015, pp. 303308.
    8. 8)
      • 19. Jacob, M., Priebe, S., K”urner, T., et al: ‘Extension and validation of the IEEE 802.11ad 60 GHz human blockage model’. Proc. 7th European Conf. on Antennas and Propagation (EUCAP), 2013, pp. 28062810.
    9. 9)
      • 11. Rosensbrock, H.H.: ‘An automatic method for finding the greatest or least value of a function’, Aust. Comput. J., 1960, 3, (3), pp. 175184.
    10. 10)
      • 21. Maltsev, A., Maslennikov, R., Lomayev, A., et al: ‘TGad: Channel models for 60 GHz WLAN systems IEEE 11-09-0334-08-00ad’, IEEE TGad Report, 2010.
    11. 11)
      • 14. Li, B., Zhou, Z., Zhang, H., et al: ‘Efficient beamforming training for 60-GHz millimeter-wave communications: a novel numerical optimization framework’, IEEE Trans. Veh. Technol., 2014, 63, (2), pp. 703717.
    12. 12)
      • 6. ‘Part 15.3: Wireless MAC and PHY specifications for high rate WPANs. Amendment 2: millimeter-wave-based alternative physical layer extension’. IEEE Std 802.15.3c-2009, 2009.
    13. 13)
      • 9. Hosoya, K., Prasad, N., Ramachandran, K., et al: ‘Multiple sector ID capture (MIDC): a novel beamforming technique for 60 GHz band multi-Gbps WLAN/PAN systems’, IEEE Trans. Antennas. Propag., 2015, 63, (1), pp. 8196.
    14. 14)
      • 24. Larsson, E.G., Edfors, O., Tufvesson, F., et al: ‘Massive MIMO for next generation wireless systems’, IEEE Commun. Mag., 2014, 52, (2), pp. 186195.
    15. 15)
      • 15. Zou, W., Du, G., Li, B., et al: ‘Step-wisely refinement based beam searching scheme for 60 GHz communications’, Wirel. Pers. Commun., 2013, 71, (4), pp. 29933010.
    16. 16)
      • 1. Yong, S.K., Chong, C.: ‘An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges’, EURASIP. J. Wirel. Commun. Netw., 2006, 2007, pp. 5061.
    17. 17)
      • 22. Xiao, Z.: ‘Suboptimal Spatial Diversity Scheme for 60 GHz Millimeter-Wave WLAN’, IEEE Commun. Lett., 2013, 17, (9), pp. 17901793.
    18. 18)
      • 5. Kutty, S., Sen, D.: ‘Millimeter wave beamforming: an inclusive survey’, IEEE Commun. Surv. Tutor., 2016, 18, pp. 949973.
    19. 19)
      • 10. Xiao, Z., He, T., Xia, P., et al: ‘Hierarchical codebook design for beamforming training in millimeter-wave communication’, IEEE Trans. Wirel. Commun., 2016, 15, (5), pp. 33803392.
    20. 20)
      • 13. Kirkpatrick, S., Gelatt, C.D.Jr., Vecchi, M.P.: ‘Optimization by simulated annealing’, Def. Sci. J., 1983, 220, (4598), pp. 671680.
    21. 21)
      • 20. Sun, R.: ‘TGay: Functional requirements document 11-15/1074r0’. IEEE TGay documents, 2015.
    22. 22)
      • 16. Powell, M.J.D: ‘An efficient method of finding the minimum of a function of several variables without calculating derivatives’, Aust. Comput. J., 1964, 7, (2), pp. 155162.
    23. 23)
      • 8. Wang, J., Lan, Z., Pyo, C.W., et al: ‘Beam codebook based beamforming protocol for multi-Gbps millimetre-wave WPAN systems’, IEEE J. Sel. Areas Commun., 2009, 27, (8), pp. 13901399.
    24. 24)
      • 18. Peter, M., Wisotzki, M., Raceala-Motoc, M., et al: ‘Analyzing human body shadowing at 60 GHz: systematic wideband MIMO measurements and modeling approaches’. Proc. of the 6th European Conf. on Antennas and Propagation (EUCAP), 2012, pp. 468472.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0378
Loading

Related content

content/journals/10.1049/iet-com.2017.0378
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address