access icon free Energy-efficient precoding design for cloud radio access networks

In cloud radio access network, a baseband unit (BBU) performs the baseband processing for a cluster of low-power low-cost remote radio heads (RRHs) that are connected to the BBU through low-latency fronthaul links. In this study, the authors study the optimisation of two energy-efficient compression and precoding strategies which take transmit power constraint, fronthaul capacity constraint and user specific rate constraint into account. To overcome the non-convexity nature of the original problem, they first transform the objective of the original problem into a parameterised subtractive form and obtain an approximate convex problem via the successive convex approximation. Then, an effective optimisation algorithm with provable convergence is designed to solve the effective problem. Numerical results reveal that the proposed scheme outperforms the conventional maximum sum rate and minimum total power consumption schemes in terms of the energy-efficiency criterion. In particular, compression after precoding strategy outperforms compression before precoding strategy when both of their RRHs perform the same user scheduling, while the opposite conclusion can be drawn otherwise.

Inspec keywords: telecommunication scheduling; cloud computing; telecommunication computing; precoding; radio access networks; energy conservation; convex programming

Other keywords: cloud radio access networks; BBU; energy-efficient compression; successive convex approximation; low-power low-cost remote radio heads; nonconvexity nature; user scheduling; low-power low-cost RRH; effective optimisation algorithm; low-latency fronthaul links; fronthaul capacity constraint; parameterised subtractive form; minimum total power consumption scheme; precoding strategy; user specific rate constraint; baseband unit; transmit power constraint; conventional maximum sum rate; energy-efficiency criterion; energy-efficient precoding design; approximate convex problem

Subjects: Telecommunication systems (energy utilisation); Internet software; Communications computing; Optimisation techniques; Codes; Radio access systems; Optimisation techniques

References

    1. 1)
      • 26. Ng, D.W.K., Lo, E.S., Schober, R.: ‘Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas’, IEEE Trans. Wirel. Commun., 2012, 11, (9), pp. 32923304.
    2. 2)
      • 2. Shi, Y., Zhang, J., Letaief, K.B.: ‘Group sparse beamforming for green cloud-RAN’, IEEE Trans. Wirel. Commun., 2014, 13, (5), pp. 28092823.
    3. 3)
      • 27. Jagannathan, R.: ‘On some properties of programming problems in parametric form pertaining to fractional programming’, Manage. Sci., 1966, 12, (7), pp. 609615.
    4. 4)
      • 29. Sriperumbudur, B.K., Torres, D.A., Lanckriet, G.R.: ‘A majorization–minimization approach to the sparse generalized eigenvalue problem’, Mach. Learn., 2011, 85, (1), pp. 339.
    5. 5)
      • 19. He, S., Huang, Y., Jin, S., et al: ‘Energy efficient coordinated beamforming design in multicell multicast networks’, IEEE Commun. Lett., 2015, 19, (6), pp. 985988.
    6. 6)
      • 16. Candes, E.J., Wakin, M.B., Boyd, S.P.: ‘Enhancing sparsity by reweighted 1-minimization’, J. Fourier Anal. Appl., 2008, 14, (5), pp. 877905.
    7. 7)
      • 5. Wu, J.: ‘Green wireless communications: from concept to reality’, IEEE Wirel. Commun., 2012, 19, (4), pp. 45.
    8. 8)
      • 20. He, S., Huang, Y., Jin, S., et al: ‘Max–min energy efficient beamforming for multicell multiuser joint transmission systems’, IEEE Commun. Lett., 2013, 17, (10), pp. 19561959.
    9. 9)
      • 21. Zhou, H., Tao, M., Chen, E., et al: ‘Content-centric multicast beamforming in cache-enabled cloud radio access networks’. IEEE Global Communications Conf., San Diego, CA, USA, 2015, pp. 16.
    10. 10)
      • 18. Gamal, A.E., Kim, Y.-H.: ‘Network information theory’ (Cambridge University Press, 2011).
    11. 11)
      • 4. Marsch, P., Raaf, B., Szufarska, A., et al: ‘Future mobile communication networks: challenges in the design and operation’, IEEE Veh. Technol. Mag., 2012, 7, (1), pp. 1623.
    12. 12)
      • 24. Sidiropoulos, N.D., Davidson, T.N., Luo, Z.Q.: ‘Transmit beamforming for physical-layer multicasting’, IEEE Trans. Signal Process., 2006, 54, (6), pp. 22392251.
    13. 13)
      • 15. He, S., Huang, Y., Jin, S.: ‘Coordinated beamforming for energy efficient transmission in multicell multiuser systems’, IEEE Trans. Commun., 2013, 61, (12), pp. 49614971.
    14. 14)
      • 13. Dinkelbach, W.: ‘On nonlinear fractional programming’, Manage. Sci., 1967, 13, (7), pp. 492498.
    15. 15)
      • 10. Park, S.H., Simeone, O., Sahin, O., et al: ‘Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks’, IEEE Trans. Signal Process., 2013, 61, (22), pp. 56465658.
    16. 16)
      • 25. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
    17. 17)
      • 14. He, S., Huang, Y., Yang, L., et al: ‘Coordinated multicell multiuser precoding for maximizing weighted sum energy efficiency’, IEEE Trans. Signal Process., 2014, 62, (3), pp. 741751.
    18. 18)
      • 6. Samardzija, D., Pastalan, J., MacDonald, M., et al: ‘Compressed transport of baseband signals in radio access networks’, IEEE Trans. Wirel. Commun., 2012, 11, (9), pp. 32163225.
    19. 19)
      • 22. Luo, Z.Q., Ma, W.K., So, A.M.C., et al: ‘Semidefinite relaxation of quadratic optimization problems’, IEEE Signal Process. Mag., 2010, 27, (3), pp. 2034.
    20. 20)
      • 1. Andrews, J.G., Buzzi, S., Wan, C., et al: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    21. 21)
      • 28. Schaible, S.: ‘Fractional programming. II, On Dinkelbach's algorithm’, Manage. Sci., 1976, 22, (8), pp. 868873.
    22. 22)
      • 9. Park, S., Chae, C.B., Bahk, S.: ‘Before/after precoded massive MIMO in cloud radio access networks’. IEEE ICC, Budapest, Hungary, June 2016, pp. 169173.
    23. 23)
      • 17. Park, S.H., Simeone, O., Sahin, O., et al: ‘Fronthaul compression for cloud radio access networks: signal processing advances inspired by network information theory’, IEEE Signal Process. Mag., 2014, 31, (6), pp. 6979.
    24. 24)
      • 3. Rao, X., Lau, V.K.N.: ‘Distributed fronthaul compression and joint signal recovery in cloud-RAN’, IEEE Trans. Signal Process., 2015, 63, (4), pp. 10561065.
    25. 25)
      • 12. Dai, B., Yu, W.: ‘Energy efficiency of downlink transmission strategies for cloud radio access networks’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 10371050.
    26. 26)
      • 7. Marsch, P., Fettweis, G.: ‘On downlink network MIMO under a constrained backhaul and imperfect channel knowledge’. IEEE Global Telecommunications Conf., Honolulu, HI, USA, November 2009, pp. 16.
    27. 27)
      • 23. Yu, H., Lau, V.K.N.: ‘Rank-constrained Schur-convex optimization with multiple trace/log-det constraints’, IEEE Trans. Signal Process., 2011, 59, (1), pp. 304314.
    28. 28)
      • 8. Kang, J., Simeone, O., Shamai, S.: ‘Fronthaul compression and precoding design for C-RANs over ergodic fading channels’, IEEE Trans. Veh. Technol., 2016, 65, (7), pp. 50225032.
    29. 29)
      • 11. Dhifallah, O., Dahrouj, H., Al-Naffouri, T.Y., et al: ‘Joint hybrid backhaul and access links design in cloud radio access networks’. IEEE VTC Fall, Boston, MA, USA, September 2015, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0305
Loading

Related content

content/journals/10.1049/iet-com.2017.0305
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading