http://iet.metastore.ingenta.com
1887

Energy-efficient precoding design for cloud radio access networks

Energy-efficient precoding design for cloud radio access networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In cloud radio access network, a baseband unit (BBU) performs the baseband processing for a cluster of low-power low-cost remote radio heads (RRHs) that are connected to the BBU through low-latency fronthaul links. In this study, the authors study the optimisation of two energy-efficient compression and precoding strategies which take transmit power constraint, fronthaul capacity constraint and user specific rate constraint into account. To overcome the non-convexity nature of the original problem, they first transform the objective of the original problem into a parameterised subtractive form and obtain an approximate convex problem via the successive convex approximation. Then, an effective optimisation algorithm with provable convergence is designed to solve the effective problem. Numerical results reveal that the proposed scheme outperforms the conventional maximum sum rate and minimum total power consumption schemes in terms of the energy-efficiency criterion. In particular, compression after precoding strategy outperforms compression before precoding strategy when both of their RRHs perform the same user scheduling, while the opposite conclusion can be drawn otherwise.

References

    1. 1)
      • 1. Andrews, J.G., Buzzi, S., Wan, C., et al: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    2. 2)
      • 2. Shi, Y., Zhang, J., Letaief, K.B.: ‘Group sparse beamforming for green cloud-RAN’, IEEE Trans. Wirel. Commun., 2014, 13, (5), pp. 28092823.
    3. 3)
      • 3. Rao, X., Lau, V.K.N.: ‘Distributed fronthaul compression and joint signal recovery in cloud-RAN’, IEEE Trans. Signal Process., 2015, 63, (4), pp. 10561065.
    4. 4)
      • 4. Marsch, P., Raaf, B., Szufarska, A., et al: ‘Future mobile communication networks: challenges in the design and operation’, IEEE Veh. Technol. Mag., 2012, 7, (1), pp. 1623.
    5. 5)
      • 5. Wu, J.: ‘Green wireless communications: from concept to reality’, IEEE Wirel. Commun., 2012, 19, (4), pp. 45.
    6. 6)
      • 6. Samardzija, D., Pastalan, J., MacDonald, M., et al: ‘Compressed transport of baseband signals in radio access networks’, IEEE Trans. Wirel. Commun., 2012, 11, (9), pp. 32163225.
    7. 7)
      • 7. Marsch, P., Fettweis, G.: ‘On downlink network MIMO under a constrained backhaul and imperfect channel knowledge’. IEEE Global Telecommunications Conf., Honolulu, HI, USA, November 2009, pp. 16.
    8. 8)
      • 8. Kang, J., Simeone, O., Shamai, S.: ‘Fronthaul compression and precoding design for C-RANs over ergodic fading channels’, IEEE Trans. Veh. Technol., 2016, 65, (7), pp. 50225032.
    9. 9)
      • 9. Park, S., Chae, C.B., Bahk, S.: ‘Before/after precoded massive MIMO in cloud radio access networks’. IEEE ICC, Budapest, Hungary, June 2016, pp. 169173.
    10. 10)
      • 10. Park, S.H., Simeone, O., Sahin, O., et al: ‘Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks’, IEEE Trans. Signal Process., 2013, 61, (22), pp. 56465658.
    11. 11)
      • 11. Dhifallah, O., Dahrouj, H., Al-Naffouri, T.Y., et al: ‘Joint hybrid backhaul and access links design in cloud radio access networks’. IEEE VTC Fall, Boston, MA, USA, September 2015, pp. 15.
    12. 12)
      • 12. Dai, B., Yu, W.: ‘Energy efficiency of downlink transmission strategies for cloud radio access networks’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 10371050.
    13. 13)
      • 13. Dinkelbach, W.: ‘On nonlinear fractional programming’, Manage. Sci., 1967, 13, (7), pp. 492498.
    14. 14)
      • 14. He, S., Huang, Y., Yang, L., et al: ‘Coordinated multicell multiuser precoding for maximizing weighted sum energy efficiency’, IEEE Trans. Signal Process., 2014, 62, (3), pp. 741751.
    15. 15)
      • 15. He, S., Huang, Y., Jin, S.: ‘Coordinated beamforming for energy efficient transmission in multicell multiuser systems’, IEEE Trans. Commun., 2013, 61, (12), pp. 49614971.
    16. 16)
      • 16. Candes, E.J., Wakin, M.B., Boyd, S.P.: ‘Enhancing sparsity by reweighted 1-minimization’, J. Fourier Anal. Appl., 2008, 14, (5), pp. 877905.
    17. 17)
      • 17. Park, S.H., Simeone, O., Sahin, O., et al: ‘Fronthaul compression for cloud radio access networks: signal processing advances inspired by network information theory’, IEEE Signal Process. Mag., 2014, 31, (6), pp. 6979.
    18. 18)
      • 18. Gamal, A.E., Kim, Y.-H.: ‘Network information theory’ (Cambridge University Press, 2011).
    19. 19)
      • 19. He, S., Huang, Y., Jin, S., et al: ‘Energy efficient coordinated beamforming design in multicell multicast networks’, IEEE Commun. Lett., 2015, 19, (6), pp. 985988.
    20. 20)
      • 20. He, S., Huang, Y., Jin, S., et al: ‘Max–min energy efficient beamforming for multicell multiuser joint transmission systems’, IEEE Commun. Lett., 2013, 17, (10), pp. 19561959.
    21. 21)
      • 21. Zhou, H., Tao, M., Chen, E., et al: ‘Content-centric multicast beamforming in cache-enabled cloud radio access networks’. IEEE Global Communications Conf., San Diego, CA, USA, 2015, pp. 16.
    22. 22)
      • 22. Luo, Z.Q., Ma, W.K., So, A.M.C., et al: ‘Semidefinite relaxation of quadratic optimization problems’, IEEE Signal Process. Mag., 2010, 27, (3), pp. 2034.
    23. 23)
      • 23. Yu, H., Lau, V.K.N.: ‘Rank-constrained Schur-convex optimization with multiple trace/log-det constraints’, IEEE Trans. Signal Process., 2011, 59, (1), pp. 304314.
    24. 24)
      • 24. Sidiropoulos, N.D., Davidson, T.N., Luo, Z.Q.: ‘Transmit beamforming for physical-layer multicasting’, IEEE Trans. Signal Process., 2006, 54, (6), pp. 22392251.
    25. 25)
      • 25. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
    26. 26)
      • 26. Ng, D.W.K., Lo, E.S., Schober, R.: ‘Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas’, IEEE Trans. Wirel. Commun., 2012, 11, (9), pp. 32923304.
    27. 27)
      • 27. Jagannathan, R.: ‘On some properties of programming problems in parametric form pertaining to fractional programming’, Manage. Sci., 1966, 12, (7), pp. 609615.
    28. 28)
      • 28. Schaible, S.: ‘Fractional programming. II, On Dinkelbach's algorithm’, Manage. Sci., 1976, 22, (8), pp. 868873.
    29. 29)
      • 29. Sriperumbudur, B.K., Torres, D.A., Lanckriet, G.R.: ‘A majorization–minimization approach to the sparse generalized eigenvalue problem’, Mach. Learn., 2011, 85, (1), pp. 339.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2017.0305
Loading

Related content

content/journals/10.1049/iet-com.2017.0305
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address